
Week 04:
File systems, File I/O, and Exceptions

CS 220: Software Design II — D. Mathias

Files allows us to store data “permanently” on a computer
what happens to the values of program variables when your program shuts down?
what about the values of files when your computer shuts down?

Files and directories (i.e., folders) form the basis of computer organization
files go in directories
directories can go inside other directories

Why Files?

File systems dictate how to organize files and directories (and drives)
Modern computers are comprised of a hierarchical file system

The File System

Hello.java

/

dmathias/

home/ usr/...

bin/ lib/... ...

readme.txt... java javac

N.B.: difference
between files and

directories? directories
traditionally have a

slash at the end

N.B.: called the
root directory

foo/

...

Windows people, you will need to use backslashes
and you’ll need to escape them in strings, e.g., “C:\\Users\\dmathias\\Hello.java"

The File System (Windows)

Hello.java

C:\

dmathias\

Users\ Program Files\...

bin\ lib\... ...

readme.txt... java javac

Absolute Paths

/

Hello.java

dmathias/

home/

Need some way of referring to a
particular location in the system
absolute path: the full address of
the file/folder

concatenates every point between the
root and the desired location
e.g., /home/dmathias/Hello.java
e.g., /home/dmathias/
e.g., C:\Users\dmathias\Hello.java

N.B.: very easy to
look this path up
on your machine!

Problems with Absolute Paths

/

Hello.java

dmathias/

home/

Referring to a file in absolute terms
will likely not work across
computers

/home/dmathias/Hello.java doesn’t
exist on John’s computer
cannot run code referring to that file on
John’s computer

Need some way to refer to files
relative to the computer they are on

m
y

co
m

pu
te

r

/

Hello.java

jsmith/

home/

Jo
hn

’s
co

m
pu

te
r

Relative Paths

/

Hello.java

dmathias/

home/

relative path: refers to the location
of a file/directory relative to where
your program is currently working
working directory: the current path
of where a program is run

e.g., Hello.java’s working directory is
dmathias and jsmith respectively
./ is shorthand for the current working
directory
./Hello.java

m
y

co
m

pu
te

r

Jo
hn

’s
co

m
pu

te
r

/

Hello.java

jsmith/

home/

Relative Path Shorthand

/

Hello.java

dmathias/

home/

When we run Hello.java, the
path ./Hello.java would be
interpreted as...

/home/dmathias/Hello.java on my
computer
and as
/home/jsmith/Hello.java on John’s
computer

m
y

co
m

pu
te

r

Jo
hn

’s
co

m
pu

te
r

/

Hello.java

jsmith/

home/

Relative Paths

/

data.txt

dmathias/

home/

If John is running my copy of
Hello.java and we want to access
data.txt, absolute paths will not
work

/home/dmathias/data.txt does not exist

Can use relative paths!
./data.txt will work on either
computer

m
y

co
m

pu
te

r

Jo
hn

’s
co

m
pu

te
r

/

jsmith/

home/

Hello.java data.txtHello.java

Additional Shorthand for Relative Paths

/

data.txt

dmathias/

home/

../ is the working directory’s parent
if we were running Hello.java, ../../
would refer to the root

~/ is the home directory
e.g., dmathias, jsmith
defined by computer

Should not need these if you
arrange your files correctly
You see them more in CS270

m
y

co
m

pu
te

r

Jo
hn

’s
co

m
pu

te
r

/

jsmith/

home/

Hello.java data.txtHello.java

Arranging Files in Eclipse

Working directory isn’t always clear
Eclipse’s working directory is your
project, not where the Java file is
The blue file is in the working
directory, the tan-is file is not
Can access files elsewhere, just
tricky to construct the path

• Reading and writing files is a core need for modern programs
•aka file input and output, or file i/o

• Modern programming languages provide constructs for handling this
•Java has options

File I/O

The Scanner Class

Provides input from the console…
and many other sources
Input source defined by the
constructor

System.in is an InputStream
File allows us to access a system file

Excellent example of method
overloading!

N.B.: you can even pass in a String
to the constructor and use your usual
Scanner methods to parse the String

The File Class

File dataFile = new File(<path>);

parameter: the (absolute or relative) path of the file to read (String)

File objects have many methods associated with them (e.g.,
isDirectory(), isFile()), but we will only need the object itself in CS 220

Using Scanner for Console Input vs Files

Scanner scan = new Scanner(System.in);
String firstName;

System.out.print("What is your first name? ");
firstName = scan.nextLine();
System.out.print("Your name is ");
System.out.println(firstName);

What is your first name?
Your name is Jim

Jim

name.txt

Jim

Scanner scan = new Scanner(new File("name.txt"));
String firstName;

firstName = scan.nextLine();
System.out.print("Your name is ");
System.out.println(firstName);

Your name is Jim

•Can use all of the Scanner methods you’re familiar with in files
•e.g., next(), nextLine(), nextInt()

•But how can you tell when you’re done reading?
•a file can have an arbitrary number of lines

Reading Files with Scanner

name.txt

Jim
Patty
Claire
Rob
Josh
Jessie

Various Scanner methods return a boolean depending on whether or not
there is another value

Detecting the End of File (EOF) with Scanner

scan.hasNextLine(); //returns true if there is another String line

scan.hasNextInt(); //returns true if there another int

scan.hasNext(); //returns true if there is another String

Scanner scan = new Scanner(new File(“names.txt")); // instantiates File also
while(scan.hasNextLine()) {
 String line = scan.nextLine();
 System.out.print(line);
}

Why instantiate the File object within the Scanner constructor call

Notice that this is the only place we will use that File object. Therefore,
there is no need to give it a name (create a variable) for it.

Detecting the End of File (EOF) with Scanner

Scanner scan = new Scanner(new File(“names.txt")); // instantiates File also
while(scan.hasNextLine()) {
 String line = scan.nextLine();
 System.out.print(line);
}

What if the file doesn’t exist?

Important note on file existence

A filename includes the complete path to the file:
data.txt is not the full filename
/home/users/dmathias/cs220/programs/program01/data.txt is the name

It is sometimes confusing to see an error message that says a file doesn’t
exist when you can see the file in your directory. Remember, it’s not
saying that no file with that “partial file name” (such as data.txt) exists, it’s
saying that none exists with the full path name you’ve specified.

Errors are catastrophic problems that cannot be recovered from
e.g., missing semicolon, not declaring variables, improper method overloading
detected before the program is run

Exceptions are problems we might be able to recover from
e.g., division by zero, manipulating null values, accessing nonexistent files
detected during execution of the program

Errors & Exceptions

Checked exceptions are used for predictable but unpreventable problems
that are reasonable to recover from

e.g., a file is corrupted and cannot be read, a database is not accessible
failure is outside of programmer’s control, but might be fixable

e.g., asking for a different file, retrying connection to the database

Two Categories of Exceptions

Unchecked exceptions are everything else, usually problems of a logical nature
i.e., programming failure

e.g., divide by zero, index out of bounds

we have mostly seen unchecked exceptions thus far (some saw checked in CS120)

•The “checking” for checked and unchecked exceptions refers to compile-time.
•Whether an exception is checked or not is determined by Java.
•When writing code that may result in a checked exception, the programmer
must handle that exception in some way.

1. use the throws keyword to pass-the-buck (so to speak)
2.use a try/catch block to deal with the exception more directly

•Failure to do one of these things will result in compilation errors.

Two Categories of Exceptions

Thus far, exceptions cause the program to crash
not an unreasonable reaction for unchecked exceptions

Java provides a construct to prevent a program crash by trying some piece
of code and catching an exception if it occurs

optionally, we might finally do something, regardless of whether an exception was
caught
allows program to continue running if we want

Java requires use of this construct if a checked exception is possible

Handling Exceptions

Allows programmers to catch and
handle exceptions

required for checked exceptions
optional for unchecked exceptions

try/catch Block

Scanner scan = new Scanner(System.in);
boolean repeat;
int value;
do {
 repeat = false;
 System.out.print("Enter a number: ");
 try {
 value = scan.nextInt();
 } catch(InputMismatchException e) {
 System.out.print("Not a number. ");
 System.out.println("Try again.");
 repeat = true;
 }
} while(repeat);

Enter a number: hello
Not a number. Try again.
Enter a number: 42

>
>

>

>

>

try/catch Block

All file i/o is checked
what if the file isn’t there?
what if we can’t open it?
what if we try to access beyond the
end of the file?
what if our Scanner is closed?

try {
 Scanner scan = new Scanner(new File("data.txt"));
 value = scan.nextInt();
} catch(FileNotFoundException e) {
 // do something
} catch(InputMismatchException e) {
 // do something
} catch(NoSuchElementException e) {
 // do something
} catch(IllegalStateException e) {
 // do something
}

N.B.: can have multiple catch
statements; will evaluate in order

(like if/else if) and will only execute
the first one found that is true

try/catch/finally Block

finally will always execute
• if something is caught
• if nothing is caught

Scanner scan = new Scanner(System.in);
int value = 0;
System.out.print("Enter a positive number: ");

try {
 value = scan.nextInt();
} catch(InputMismatchException e) {
 System.out.println("Not a positive number.");
} finally {
 scan.close();
}

System.out.println("Your number: " + value);

try/catch/finally Block

If we want to catch, then terminate
the program and print the stack
trace, we can

default behavior of Eclipse if you ask it
to construct a try/catch block

Scanner scan = new Scanner(System.in);
int value = 0;
System.out.print("Enter a positive number: ");

try {
 value = scan.nextInt();
} catch(InputMismatchException e) {

} finally {
 scan.close();
}

System.out.println("Your number: " + value);

 e.printStackTrace();

try/catch/finally Block

Can also rethrow the exception
A catch statement resolves an
exception that exists
Rethrowing the exception means
that there is a new exception to
resolve

Scanner scan = new Scanner(System.in);
int value = 0;
System.out.print("Enter a positive number: ");

try {
 value = scan.nextInt();
} catch(InputMismatchException e) {

} finally {
 scan.close();
}

System.out.println("Your number: " + value);

 throw new InputMismatchException();

Exception is a class, just like other Java classes
We already know several descendants

ArrayIndexOutOfBoundsException, IOException, InputMismatchException

All extend Exception in some way
unchecked exceptions extend RuntimeException, which extends Exception

Creating Our Own Exceptions

Extending Exception

Must override constructor
just pass a message to super
can also override constructor that
uses a message parameter

Throwing the custom
exception only requires
instantiating the new object
and throwing it
Methods throwing an
exception must modify their
signature

public class SwearingException extends Exception {
 public SwearingException() {
 super("No swearing!");
 }
}

public void printText(String text) throws SwearingException {
 Pattern pattern = Pattern.compile("[@$*!#%&]{3,}");
 Matcher m = pattern.matcher(text);
 if (m.find()) {
 throw new SwearingException();
 } else {
 System.out.println(text);
 }
}

Extending Exception

Must override constructor
just pass a message to super
can also override constructor that
uses a message parameter

Throwing the custom
exception only requires
instantiating the new object
and throwing it
Methods throwing an
exception must modify their
signature

public class SwearingException extends Exception {
 public SwearingException() {
 super("No swearing!");
 }
}

public void printText(String text) throws SwearingException {
 Pattern pattern = Pattern.compile("[@$*!#%&]{3,}");
 Matcher m = pattern.matcher(text);
 if (m.find()) {
 throw new SwearingException();
 } else {
 System.out.println(text);
 }
}

• Pros
•can parse/cast text right away (e.g., next(), nextLine(), nextInt())
•simple

• Cons
•cannot handle binary files
•very small buffer

•can only read a relatively small number of chars at a time

•cannot be used in a multi-threaded program
•can be a pain in the neck when handling input with different types (e.g. Strings and ints)

Scanner Details

All data is stored in binary (0s and
1s)
Data must be encoded for its format

determines the translation from what we
see to 0s and 1s, and back again

The encoding applied to data can
be determined by the file extension

e.g., .png for pictures, .txt for text files
tells computer what program can
interpret that encoding

WELL, PRINCE, so Genoa and Lucca are now just
family estates of the Buonapartes. But I warn you,
if you don't tell me that this means war, if you still
tr y to defend the infamies and horrors
perpetrated by that Antichrist I really believe he is
Antichrist I will have nothing more to do with you
and you are no longer my friend, no longer my
'faithful slave,' as you call yourself! But how do
you do? I see I have frightened you sit down and
tell me all the news."

It was in July, 1805, and the speaker was the well-
known Anna Pdvlovna Scherer, maid of honor and
favorite of the Empress Marya Fedorovna. With
these words she greeted Prince Vasili Kurdgin, a
man of high rank and importance, who was the
first to arrive at her reception. Anna Pdvlovna had
had a cough for some days. She was, as she said,
suffering from lagrippe; grippe being then a new
word in St. Petersburg, used only by the elite.

All her invitations without exception, written in
French, and delivered by a scarlet-liveried
footman that morning, ran as follows:

"If you have nothing better to do, Count [or

Both store the same data (to us), but
in different formats
Format dictates how the computer:

interprets the data
manipulates the data

Data Encoding: An Analogy

String text = "42";

int num = 42;
N.B.: simplified

binary to more easily
see the difference

00110100 00110010

00101010

Text files store all data as chars – even numbers!
we’ll use the .txt extension in this class
advantage: text files are simpler for humans to work with

Binary files store all data according to its type
can only store primitive types
we’ll use the .bin extension in this class
advantage: binary files are more space-efficient, easier for computers to work with

Both file types are ultimately rendered as 1s and 0s
how we interpret the 1s and 0s depends on the file type

Text vs Binary Files

Primitive Data Types in Java
Integer Numeric Types (can only be whole numbers)

Decimal Numeric Types (can be whole or decimal numbers)

Character Type

Logical Type

char 2 bytes any keyboard character

boolean 1 byte true or false

byte
short
int
long

1 byte
2 bytes
4 bytes
8 bytes

-128 127
-32678 32677

-2147483648 2147483647
-9223372036854775808 9223372036854775807

through
through
through
through

float
double

4 bytes
8 bytes

7 decimal digits of accuracy
15 decimal digits of accuracy

An int Stored in a Text vs Binary File

number.txt number.bin

1503478923

> > > >

10 chars x 2 bytes/char = 20 bytes

> > > > > >

An int Stored in a Text vs Binary File

number.txt number.bin

1503478923

10 chars x 2 bytes/char = 20 bytes 1 int x 4 bytes/int = 4 bytes

Many ints Stored in a Text vs Binary File

numbers.txt numbers.bin

1 billion 10 digit ints stored in a file

10 chars x 2 bytes/char x 1 billion
= 20 billion bytes

1 int x 4 bytes/int x 1 billion
= 4 billion bytes

= 20 GB = 4 GB

Choose a text file if…
data is mostly text (some numbers are OK)
easy human access is important

i.e., anyone can just open and read the file

data isn’t too large

Choose a binary file if…
data is mostly numbers
data won’t be read by humans/will be interpreted by another program
large amounts of data

Text vs Binary Files

Java classes used together to read text files
cannot read binary files!

BufferedReader/FileReader

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Scanner;

public class FileManipulation {

public static void main(String[] args) {
}

/**
 * Copies the .txt files from the dir
 */
private static void copyFiles() {

File srcDir = new File("files/");
File destDir = new File("./");

String files[] = srcDir.list();

try {
for (String file : files) {

File sFile = new File(src, file);
File dFile = new File(dest, file);

BufferedReaderFileReader

reads data
from file

stores data in buffer
for when program needs it

FileNotFoundException: indicates file was not found
produced any time we try to create a new File

IOException: indicates some i/o problem occurred
several exceptions extend from this — including FileNotFoundException

Both are checked exceptions
Order of catch matters

catching IOException first will mean FileNotFoundException will also be caught
there

File I/O Exceptions

BufferedWriter/FileWriter/PrintWriter

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Scanner;

public class FileManipulation {

public static void main(String[] args) {
}

/**
 * Copies the .txt files from the dir
 */
private static void copyFiles() {

File srcDir = new File("files/");
File destDir = new File("./");

String files[] = srcDir.list();

try {
for (String file : files) {

File sFile = new File(src, file);
File dFile = new File(dest, file);

Java classes used together to write to text files
cannot write to binary files!

PrintWriter

access to print
and println

BufferedWriter

buffers text
for output

FileWriter

writes out text

DataInputStream/FileInputStream

Java classes used together to read binary files
cannot read text files!

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Scanner;

public class FileManipulation {

public static void main(String[] args) {
}

/**
 * Copies the .txt files from the dir
 */
private static void copyFiles() {

File srcDir = new File("files/");
File destDir = new File("./");

String files[] = srcDir.list();

try {
for (String file : files) {

File sFile = new File(src, file);
File dFile = new File(dest, file);

DataInputStreamFileInputStream

reads data
from file

allows the programmer to
interpret data as primitives

DataOutputStream/FileOutputStream

Java classes used together to write to binary files
cannot write to text files!

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.Scanner;

public class FileManipulation {

public static void main(String[] args) {
}

/**
 * Copies the .txt files from the dir
 */
private static void copyFiles() {

File srcDir = new File("files/");
File destDir = new File("./");

String files[] = srcDir.list();

try {
for (String file : files) {

File sFile = new File(src, file);
File dFile = new File(dest, file);

DataOutputStreamFileOutputStream

writes data
to file

programmer-friendly
write methods

