
Week 02:
Abstract Classes & Interfaces

CS 220: Software Design II — D. Mathias

Inheritance Example
Employee

Faculty Staff

Professor Lecturer Dean ADA Security

Can store objects of related (but different) types in a single data structure
data structures store only one type of object
can use type conformance to store objects of different types that have a common
ancestor

more on this later, but should be familiar from CS 120

e.g., Employee[] can store objects of type Professor, Lecturer, ADA …

Advantages of Inheritance

But what if what ties these objects together are just abstract traits?
e.g., employees accrue money towards retirement, but how that is calculated
depends on the type of employee (e.g., faculty, staff)

Option 1: provide a default implementation in the parent class, override in
the child class(es) as needed

Option 2: provide implementations only in the child classes

Option 3: use abstract classes
Can specify that a method is required, but defer implementation to a child
class

Options

Option 1: provide a default
implementation in the parent class,
override in the child class(es) as
needed

Problem: now have a default
implementation that is meaningless

i.e., what does it mean to just be an
employee?

Options

public class Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

Option 2: provide implementations
only in the child classes 

Problem: can no longer leverage
the benefits of inheritance/type
conformance: if we have an array.
of objects that conform to
Employee, the array type is
Employee[] but we can’t apply
calcRetirement method to a Faculty
object in the array because it
doesn’t exist for Employee.

Options

public class Employee {
// no method calcRetirement()

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Option 2: provide implementations
only in the child classes

Options

Employee[] allEmps;
// allEmps filled with all Employee objects
for (int i = 0; i < allEmps.length; i++) {
 total += allEmps[i].calcRetirement());
}

public class Employee {
// no method calcRetirement()

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

this will not work without casting, as Employee
does not have a calcRetirement() method

Option 2: provide implementations
only in the child classes

Options

Employee[] allEmps;
// allEmps filled with all Employee objects
for (int i = 0; i < allEmps.length; i++) {
 total += allEmps[i].calcRetirement());
}

public class Employee {
// no method calcRetirement()

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Remember: what we can do with an
object depends on the variable; how
it behaves depends on the object.

Option 3: use abstract classes
Can specify that a method is
required, but defer implementation
to a child class

Options

public abstract class Employee {
public abstract double calcRetirement();

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Option 3: use abstract classes
Parent class specifies that all child
classes should have a particular
method signature, but allows the
child classes to provide the
implementation
No meaningless default method

Options

public abstract class Employee {
public abstract double calcRetirement();

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Option 3: use abstract classes
Child classes can then provide
their own unique implementation
according to their needs

Options

public abstract class Employee {
public abstract double calcRetirement();

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Option 3: use abstract classes

Options

public abstract class Employee {
public abstract double calcRetirement();

}

public class Faculty extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 9 * 0.05;
}

}

public class Staff extends Employee {
public double calcRetirement() {

return yrsWrkd * avgSalary / 12 * 0.05;
}

}

Employee[] allEmps;
// allEmps filled with all Employee objects
for (int i = 0; i < allEmps.length; i++) {
 total += allEmps[i].calcRetirement());
}

this does work, since every class that extends
from Employee is guaranteed to have some

implementation of this method

Want to have Shape class as a superclass to various shapes
e.g., Triangle, Oval

All shapes have common properties (e.g., area, perimeter), but calculating
them varies by the actual shape we are calculating it for

i.e., it is meaningless to calculate the area of a Shape object

Another Example

Want to defer implementation of a method to later classes
may not be defined in the immediate context!

abstract class: a class that defines the shared properties of subclasses
without always providing definitions

zero or more methods can be defined as abstract, meaning they have no definition
zero or more methods can be non-abstract, i.e., they have a definition

look just like methods you’ve seen before

cannot be instantiated
because some methods are not yet defined

can be subclassed

Representing the Abstract

• Provide shared attributes and methods for subclasses
• Aide in type conformance
• Allow us to represent something that is a category/group for which the

relationship is not tangible

Purpose of Abstract Classes

Uses the Java keyword abstract
Applied in two places:

methods without an implementation
the class signature for the class that
contains the abstract method(s)

Class can still have…
attributes
non-abstract methods/constructor
inheritance

Abstract Classes in Action

public abstract class Employee {

 protected String firstName;
 protected String lastName;

 public Employee(String fn, String ln) {
 firstName = fn;
 lastName = ln;
 }

 public String getFullName() {
 return firstName + " " + lastName;
 }

 public abstract double calcRetirement();
}

Constructor cannot be used to
instantiate a new abstract object

the following is incorrect syntax
Employee e = new Employee(“Tim”, “Smith”);

Constructor is only used by child
classes

sets attributes shared across child classes

Abstract Classes in Action

public abstract class Employee {

 protected String firstName;
 protected String lastName;

 public Employee(String fn, String ln) {
 firstName = fn;
 lastName = ln;
 }
 ...
}

public class Faculty extends Employee {
public Faculty(String fn, String ln) {

super(fn, ln);
}

}

Inheritance Example
Employee

{abstract}

Professor Lecturer Dean ADA Security

Faculty
{abstract}

Staff
{abstract}

Java is made up of many abstract
classes at the top levels, and only a

proportionally small number of
concrete classes at the bottom

Inheritance Example

Child classes can either be abstract or not
abstract classes can provide implementations for
zero or more of the inherited abstract methods

can also add new abstract methods

non-abstract classes must provide
implementations for all inherited abstract
methods

Faculty didn’t provide an implementation from Employee?
Professor and Lecturer must

Faculty did provide an implementation from Employee?
Professor and Lecturer can inherit that, or can override it

Professor Lecturer

...
Faculty

{abstract}

Employee
{abstract}

Write the abstract class Staff, which extends Employee
add a new int attribute vacationTime, which is set in the constructor
add a new public abstract method calculateVacationAccrual(), which returns double

Write the class ADA, which extends Staff
the constructor should automatically set the vacation time to 15
you may choose how to implement the abstract method

Exercise

Tying classes together with inheritance establishes an is-a relationship
a professor is-a faculty member is-a employee…

Sometimes, we want to tie classes together that are not so closely related
these classes have shared capabilities, but might not be directly related

Inheritance Revisited

An Outlandish Example (to illustrate the point)

You are in the middle of a large room when a zombie
enters. There are no items within your reach. You yell

to a friend near several items: “Quick! Throw me
something I can injure the zombie with!”

What are the desired properties of an item your
friend should throw you? What are some items that

fulfill those properties?

interface: a construct where you can specify what actions a class
implementing that interface should be able to take

no attributes
no constructor

cannot be instantiated, like abstract classes

no method implementations
(except default methods starting in Java 8, but it’s a minor use case we’re going to skip)

“I need to guarantee that this class can do the following…”

Interfaces

Uses the Java keyword interface
replaces class in the class signature

Just a list of method signatures
can be one or more
no need to include abstract, which is
assumed in an interface

Interfaces in Action

public interface ZombieTool {
 public void hurtZombie();
}

Classes that implement this
interface have two changes:

must add implements to the class
signature
must provide implementations of all
methods

Notice how otherwise unrelated
Shovel and Dinosaur are

Interfaces in Action

public interface ZombieTool {
 public void hurtZombie();
}

public class Shovel implements ZombieTool {
 ...
 public void hurtZombie() {
 System.out.println("Hit zombie!");
 }
}

public class Dinosaur implements ZombieTool {
 ...
 public void hurtZombie() {
 System.out.println("Eat zombie!");
 }
}

Can even implement from multiple
interfaces
Provides a form of multiple
inheritance in Java

Interfaces in Action

public interface ZombieTool {
 public void hurtZombie();
}

public class Shovel implements ZombieTool, DiggingTool {
 ...
 public void hurtZombie() { System.out.println("Hit zombie!"); }

 public void dig() { System.out.println("Digging..."); }

 public void dig(int howDeep) { System.out.println("Dug "
 + howDeep + " feet"); }
}

public interface DiggingTool {
 public void dig();
 public void dig(int howDeep);
}

Representation similar to inheritance
Key differences

can point to more than one interface
use of dashed line

Interfaces in UML

Shovel

ZombieTool
{interface}

DiggingTool
{interface}

1. Establishing commonly used functionality across disparate classes
the compareTo method is useful for determining order between two objects
part of the Comparable interface

2. Allowing multiple inheritance
can be dangerous; not covered in CS 220

3. Setting a contract that classes from third-party programmers can use
not covered in CS 220

Interface Uses

Write the interface CourseAdmin
add the method public String getCourses();
add the method public void addCourses(String course);
add the method public boolean removeCourse(String course);

Exercise

Now, have both Faculty and ADA implement this interface

What do you think will happen in Faculty regarding method implementation?

Exercise

Compares two objects to determine order
what this means is up to the programmer!

Comparable Interface

+ compareTo(Object o) : int

Comparable
{interface}

Professor as = new Professor("Sauppe", "Allie");
Professor dm = new Professor("Mathias", “David”);
as.compareTo(dm);

<this>.compareTo(<other>) returns…
0 if the objects are equal
-1 if this object is less than the other object
1 if this object is greater than the other object

Abstract Classes vs Interfaces

Abstract Classes
allows for attribute/method sharing
among related classes (inheritance)
allow for method conformance among
related classes
allows for some implementation, but not
required

Interfaces
allows for method conformance among
unrelated classes
can enable something akin to multiple
inheritance

Want to relate related classes? Potentially provide some implementation?
abstract class

What to guarantee that otherwise-unrelated classes share a particular
functionality? No need to provide an implementation?

interfaces

In reality, it’s a bit of an art form
I’ll help you decide (or sometimes tell you which to use)

Which To Choose?

Abstract classes and interfaces are also considered potential types
Any class that extends or implements these is considered a subtype

and thus, you can store an object of that type into a variable of the abstract class/
interface supertype

Revisiting Subtypes

