
Week 01:
Introduction

CS 220: Software Design II — D. Mathias

Second semester programming course
Covers…

leftover topics from 120 (e.g., abstract classes/interfaces, file i/o, 2D arrays)
data structures (e.g., lists, stacks, queues, sets, maps)
algorithms and their analysis (e.g., searching, sorting)

What is CS 220?

A Typical Week

lecture lecture lab (Wing 016) in-class ex.

Monday Tuesday Wednesday Thursday Friday

We will meet in lab on Wednesdays

Most weeks in Wing 016
Computers available there

will need your NetID/password (i.e., what you use to log into WINGS, email)
or you can use your laptop

Labs

Graded in one of two ways:
1. show up and are on task the entire time: full credit

 no need to submit anything

 not on task the whole time: half credit
texting or playing <insert name of relevant video game here>: no credit

2. if you can’t make it to lab, submit the lab program(s) via email
 this option applies to sickness/isolation, required travel, etc

No labs will be dropped

Labs

Released (roughly) every third week - 5 assignments in total
Corresponds to the topic of the previous week(s), due in ~2 weeks
Larger programs than 120

When should you start working on an assignment?

Programming Assignments

On my website: https://cs.uwlax.edu/~dmathias/cs220.html

I don’t post materials on Canvas

On Canvas, you will find:
- Announcements (check daily)
- Assignment due dates
- Assignment grades

Course Materials

https://cs.uwlax.edu/~dmathias/cs220.html

On my website - read it on your own
- covers many things
- bring questions tomorrow

- seriously, I expect you to read it and ask questions

Syllabus

Virtual only
- Monday 11:00 - 12:00
- Wednesday 2:15 - 3:15
- Friday 11:00 - 12:00

Zoom link is on the syllabus and multiple places on my website

Office Hours

Office Hours

Opportunity to…
clarify material from class
clarify requirements of assignments
work on problem solving for programs
get debugging help - but you need to become proficient at debugging

Not an opportunity for me to write your code
I will answer questions, and then ask you to grapple for a little bit with the
program using new information/understanding of the material

So start assignments early!

Comfortable with 120 material
Competent with problem solving techniques
Self-sufficient in generating examples for studying/programming

questions in office hours will work best if you bring these along

Format code correctly

Expectations

Expect to spend ~12 hrs/week
Work consistently, a little every day

start assignments early
work through additional exercises

Class builds on itself, so solidify earlier concepts
Start assignments early
Attend office hours when needed
Start assignments early
Make friends in the class and form study groups
Start assignments early

Staying Afloat

Start assignments early
fixing code constitutes ~50% of time spent on a project1

~60% of defects exist when understanding/conceptualizing the problem statement1

Spend time thinking about the problem, sketching out solutions in English
helps clarify your understanding
happy to discuss your reasoning

This process requires you to start assignments early

Productive Work

1: http://programmers.stackexchange.com/questions/91758/debugging-facts-and-statistics

Opportunity to…
clarify material from class
clarify requirements of assignments
work on problem solving for programs
get debugging help

Not an opportunity for me to write your code
I will answer questions, and then ask you to grapple for a little bit with the
program using new information/understanding of the material

start assignments early!

Office Hours

Working together is encouraged
- develop understanding of the problem
- swap ideas
- correct technical understanding of code constructs

Do not share code
Do not look at someone’s code
Do not copy and paste someone’s code (even if it’s just a few lines/a method)
Do not write code together

A Note on Working Together…

Write code individually
The person with working code should be looking at the problematic code
Talk to me
Start assignments early!

When In Doubt

Groups of 3-5
Introduce yourselves to one another

name
year in school
major/minor
do you start assignments early?
what do you do when you’re procrastinating?

Come up with one question you have for me
about the course/computer science/me (that I would be willing to answer...)

Introductions

Week 01:
Object-oriented Paradigm and Java Style

CS 220: Software Design II — D. Mathias

Object-oriented programs are
comprised of objects from multiple
classes interacting, mimicking how

the real world works.

• Allow us to group together pieces of data that define a real world concept
• even if they are of different datatypes!
• e.g., a professor is made up of a first/last name, courses they teach…

• A class provides a definition of what pieces of data define a real world
concept

• An object defines a particular instance of that class, providing concrete
values

Classes

UWL as Object-Oriented Data

Professor
(name, list of classes, office)

objects

Allie Sauppé David Mathias Elliot Forbes Jason Sauppe Sam Foley Tom Gendreau
CS120, CS364 CS120, CS224 CS272, CS370 CS225, CS371 CS270, CS441 CS340, CS442

class

Wing 214 Wing 212 Wing 219 Wing 207 Wing 220 Wing 211

• Identifier
• name of the class
• should be singular, start with a capital letter (e.g., Professor, Student)

• Attributes
• data that defines every object of that class type

• Methods
• define the actions that can be taken with objects of that class type

Components of Classes

Components of Classes
public class Professor {

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

}

only part of the class
(missing many details)

Components of Classes: Identifier

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

Name of the class
Should be singular
Should start with a capital letter
(e.g., Professor, Student)

public class Professor {

}

Components of Classes: Attributes
public class Professor {

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

}

Data that defines every object of that
class type
Variable declarations at a minimum

can also initialize/instantiate if needed

Also referred to as global variables
have scope throughout the class
should always provide a visibility

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

Components of Classes: Methods
public class Professor {

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

}

Define the actions that can be taken
with objects of that class type

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

Components of Classes: Constructor Method
Method to create (instantiate) an
object of this class type
Named the same as the class
Lacks a return type

public class Professor {

private String firstName;
private String lastName;
private String dept;
private Course[] courses;

public String getDept() {
return dept;

}

public void setDept(String dept) {
this.dept = dept;

}

}

public Professor(String fn, String ln) {
this.firstName = fn;
this.lastName = ln;

}

• Used to control access to classes, methods, and attributes
• Three options

• public: can be accessed from any class
• private: can only be accessed from its own class
• protected: accessible to this class and child classes

• Visibility applies to classes, methods, and attributes
• public class Professor
• public static void printArray(char[] arr)
• private String firstName

Visibility

• Classes are usually public
• tend to only be useful to us if they can be accessed from other classes

• Attributes are usually private
• don’t want people to change them at will
• forces change through methods, which provide guarantees

• Methods are most likely public, but private is also common
• public methods used to work with objects of that type
• private methods used to help internal class functionality

Visibility Rules of Thumb

• Since attributes are usually private, need some way to access them
• Getter methods get the value of an attribute
• Setter methods set the value of an attribute

• can be used to ensure the attribute is only set to sensible values
• e.g., only possible values for birth month are 1-12

• Example for firstName attribute
• public String getFirstName()
• public void setFirstName(String fn)

Getter and Setter Methods

The static keyword controls whether a resource (e.g., method, variable)
belongs to the class or an object of that class type

• static: do not need to have instantiated an object of that class type to use it
• non-static: must have an object instantiated of that class type

Overarching question: Do I need to know one or more attribute values from
an object to use this?

• yes? non-static
• no? static

Static vs Non-Static Methods

• Generally, methods/variables will be non-static
• conforms to object-oriented principles

• Static methods can only access static attributes
• non-static methods can access all attributes

• Examples of static methods from Java:
• everything from the Math class
• Math.pow(double x, int y)
• Math.max(double x, double y)

Static Rules of Thumb

How to Call Methods

<Class>.<methodName>(<args>)

or

<methodName>(<args>)

Is the method I want to call static?

yes no

<object>.<methodName>(<args>)

or

<methodName>(<args>)

will assume the class you are currently in must already be in the class;
will assume the object you are currently using

i.e., this.<methodName>(<args>)

1. Class name
2. Attributes

name, type, visibility, initialization/instantiation?

3. Constructor method
parameters come from attributes

4. Other methods
getters/setters, methods specified in requirements

Steps to Creating a New Class

Write a new class called Student. Each object of this type will represent a
single student at UWL. Students are defined by first, middle, and last name,
a username (lastname.firstname), birthday, and a home address. Write the
getter/setter methods for the first name and last name. Additional methods
should also return their email address (username@uwlax.edu) and their
age.

Example: Creating a New Class

Easy way to represent basic
components of a class (name, attributes,
methods)
Part of unified modeling language (UML)

used to communicate structure of programs

Visibility prefaces identifier
+ for public
— for private
for protected

Static attributes/methods are underlined

Class Diagram

— firstName : String
— lastName : String
— birthYear : int
— birthMonth : int
— birthDay : int

+ Student(String, String,
 int, int, int)
+ getFirstName() : String
+ setFirstName(String) : void
+ calculateAge(int, int, int) : int

Student

Attributes list type after colon
Methods list only parameter types
Return type appears after method,
prefaced with a colon

constructor will not list a return type
list void if no return type

Class Diagram

— firstName : String
— lastName : String
— birthYear : int
— birthMonth : int
— birthDay : int

+ Student(String, String,
 int, int, int)
+ getFirstName() : String
+ setFirstName(String) : void
+ calculateAge(int, int, int) : int

Student

Used to identify current state of object
Lists current values for each attribute
Does not list methods

do not change depending on object

Object Diagram

firstName : "Jimmy"
lastName : "Gordon"
birthYear : 1994
birthMonth : 4
birthDay : 8

Student

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", "David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

>

>

>

as

dm
>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", "David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm>

temp null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor(“Mathias", "David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm

temp

>

null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm

temp

>

null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm

temp

>

null

Object Tracing

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

Professor temp;

temp = as;
as = dm;
dm = temp;
temp = null;
System.out.println(as.getFirstName() +
 " " + dm.getFirstName());

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm

temp
David Allie

null

always treat variables of a
class type and the objects

they refer to as two
separate entities

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

as.renameProf("Allison");

dm.renameProf(“Dude");

public void renameProf(String newName) {
 this.firstName = newName;
}

method contained
in the Professor class

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", "David");

as.renameProf("Allison");

dm.renameProf(“Dude");

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

>

>

>

as

dm
public void renameProf(String newName) {
 this.firstName = newName;
}

public void renameProf(String newName) {
 this.firstName = newName;
}

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

dm.renameProf(“Dude");

Professor

firstName : "Allie"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

>

>

as

dm

as.renameProf("Allison");
this

public void renameProf(String newName) {
 this.firstName = newName;
}

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

dm.renameProf(“Dude");

Professor

firstName : "Allison"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

>

>

as

dm

as.renameProf("Allison");
this

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

as.renameProf("Allison");

dm.renameProf(“Dude");

Professor

firstName : "Allison"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm
>

public void renameProf(String newName) {
 this.firstName = newName;
}

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", "David");

as.renameProf("Allison");

Professor

firstName : "Allison"
lastName : "Sauppe"

Professor

firstName : "David"
lastName : “Mathias"

as

dm
>

public void renameProf(String newName) {
 this.firstName = newName;
}
>

dm.renameProf(“Dude");

this

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

as.renameProf("Allison");

Professor

firstName : "Allison"
lastName : "Sauppe"

Professor

firstName : "Dude"
lastName : “Mathias"

as

dm
>

public void renameProf(String newName) {
 this.firstName = newName;
}

dm.renameProf(“Dude");

>
this

Object Tracing With Methods

Professor as = new Professor("Sauppe", "Allie");

Professor dm = new Professor("Mathias", “David");

as.renameProf("Allison");

dm.renameProf(“Dude");

Professor

firstName : "Allison"
lastName : "Sauppe"

Professor

firstName : "Dude"
lastName : “Mathias"

as

dm
>

public void renameProf(String newName) {
 this.firstName = newName;
}

programs are comprised of classes

classes are comprised of attributes + methods

methods are comprised of basic code

• Things in the real world are often grouped together, or share
characteristics

• dogs, cats, and horses are all mammals; mammals, fish, and birds are all animals
• Object oriented programming models the real world

• thus, we should model these relationships
• inheritance: specifying commonalities/differences between related classes

• commonalities in superclass (parent)
• differences in subclass (child)

A Hierarchy of Classes

Inheritance Example
Employee

Faculty Staff

Professor Lecturer Dean ADA Security

Inheritance Example

Faculty

Professor Lecturer

Employee

...

public class Employee {
...

}

public class Faculty extends Employee {
...

}

public class Professor extends Faculty {
...

}

public class Lecturer extends Faculty {
...

}

Inheritance Example

Child classes can access public/protected
attributes/methods in parent classes

extends up the hierarchy
e.g., Professor can access Faculty, Employee

Parent classes cannot access anything in
a child class

e.g., Employee cannot access anything in
Faculty, Professor, Lecturer, ...

Faculty

Professor Lecturer

Employee

...

• Polymorphism is the occurrence of something in many different forms
• in the case of programming, methods

• Two types of polymorphism
• overriding occurs when a child class replaces a method from a parent class
• overloading occurs when several methods in a class share the same name but with

different parameters

Polymorphism

Method Overriding

public class Employee {
...

 public int getContractLength() {
return 12;

}

...
}

public class Faculty extends Employee {
...

 public int getContractLength() {
return 9;

}

...
}

Any objects of type Employee, or
that inherit from Employee, will use
the method found in Employee

…except for Faculty and its
subclasses which will override the
method with the version found in
Faculty

Methods must have the same
signature to override

Method Overloading

Commonly used for constructor
method, but can be used for any
method

e.g., Scanner can be instantiated with
a variety of different input sources,
each input source requires its own
constructor

Java will determine which version
to call based on parameters

public class Faculty extends Employee {

 String[] dept = new String[1];

...

 public void setDept(String dept) {
this.dept[0] = dept;

}

 public void setDept(String[] dept) {
this.dept = new String[dept.length];

 for (int i = 0; i < dept.length; i++) {
 this.dept[i] = dept[i];
 }

}

...
}

Method Overloading

Can even call from one version of
the method to another

again, Java will determine which
version

Notice the use of the this keyword
to reference the current object!

public class Faculty extends Employee {

 String[] dept;

...

 public void setDept(String dept) {
this.setDept(new String[]{dept});

}

 public void setDept(String[] dept) {
this.dept = new String[dept.length];

 for (int i = 0; i < dept.length; i++) {
 this.dept[i] = dept[i];
 }

}

...
}

Method Overloading

To successfully overload a method,
one or more of the following must
change:

the type of the parameter(s)
the number of parameters
the order of parameters

if of two or more types

public class Faculty extends Employee {

 String[] dept;

...

 public void setDept(String dept) {
this.setDept(new String[]{dept});

}

 public void setDept(String[] dept) {
this.dept = new String[dept.length];

 for (int i = 0; i < dept.length; i++) {
 this.dept[i] = dept[i];
 }

}

...
}

• The this keyword allows us to refer to an object when we are in its
instance

• The super keyword allows us to refer to an object’s parent
• Can be used just like other method/variable references
• super() // calls the parent’s constructor
• super(arg1, arg2, ...) // calls the parent’s constructor
• super.methodName() // calls a method in the parent class
• super.attributeName // references a parent’s attribute

• Can omit the super in the last two examples if there is not an attribute/
method of the same name in the current class

Super

Example: Super

public class Employee {
...

 public int getContractLength() {
return 12;

}

...
}

public class Faculty extends Employee {
...

 public int getContractLength() {
return super.getContractLength() - 3;

}

...
}

Will call the parent class, use the
returned value from the parent to
complete the calculation

A Hierarchy of Classes

A class without a parent class is
automatically a child class of the Object
class, even if it is not explicitly stated
Thus, every class in Java has the Object
class as an ancestor

Faculty

Professor Lecturer

Employee

...

Object

Provides basic implementations of
methods critical to using objects

e.g., providing a text representation of an
object
e.g., checking for equality between two
objects

Can override to redefine behavior for a
class

The Object Class

+ toString() : String
+ equals(Object obj) : boolean
+ hashCode() : int
+ wait()
+ wait(long timeout)
+ wait(long timeout, int nanos)
clone() : Object
finalize()
+ getClass() : Class
+ notify()
+ notifyAll()

Object

Note that the toString() method is
called on any object whenever an object
is printed to the console

e.g.,
System.out.print(profObject)

will actually yield
System.out.print(profObject.toString())

even if it is not explicitly stated

The Object Class

+ toString() : String
+ equals(Object obj) : boolean
+ hashCode() : int
+ wait()
+ wait(long timeout)
+ wait(long timeout, int nanos)
clone() : Object
finalize()
+ getClass() : Class
+ notify()
+ notifyAll()

Object

Might have heard this term before
data type, primitive type, class type…

type: a classification for data that tells a programming language how that
data can be used

values of number types can be added, subtracted, multiplied…
values of String type can be concatenated, substring-ed, printed out

Categories of types in Java
primitive
interface

What is a Type?

class
array

• Every variable has a type
• Every piece of data (i.e., object) has a type
• Assignment of data to a variable is dependent on the types of each

Variables & Type

<variable> = <data>;

N.B.: the type associated with
the data must match or be a

subtype of the type of the
variable

The object stored in a variable
might have a type different than
the variable itself

i.e., an object can take on several
different guises

What can we do with the
object?

depends on the type of the variable

How will the object behave?
depends on the type of the object

Type Conformance

Professor as = new Professor("Sauppe", "Allie");

Employee emp = as;

Professor

firstName : "Allie"
lastName : "Sauppe"

>

>

as
(Professor)

emp
(Employee)

Type conformance is when an
object of type X conforms to a
variable of type Y

X must be the same as or a
subclass of Y

Ask yourself: does the type on
the right of the = conform to the
type on the left?

i.e., is the type on the right a
descendant of the type on the left?

Type Conformance

Professor as = new Professor("Sauppe", "Allie");

Employee emp = as;

Professor

firstName : "Allie"
lastName : "Sauppe"

as
(Professor)

emp
(Employee)

Subtype Polymorphism

Subtype polymorphism ensures
that an object behaves
according to its type, rather than
the variable’s type

public class Employee {
 ...
 public String toString() {
 return firstName + " " + lastName;
 }
}

Professor

firstName = "Allie"
lastName = "Sauppe"
rank = “associate"

as
(Professor)

emp
(Employee)

public class Professor extends Faculty {
 ...
 public String toString() {
 return super.toString() + ", " + rank;
 }
}

Professor as = new Professor("Sauppe", "Allie");
Employee emp = as;
System.out.println(as);
System.out.println(emp);

Subtype Polymorphism

public class Employee {
 ...
 public String toString() {
 return firstName + " " + lastName;
 }
}

Professor

firstName = "Allie"
lastName = "Sauppe"
rank = “associate"

as
(Professor)

emp
(Employee)

public class Professor extends Faculty {
 ...
 public String toString() {
 return super.toString() + ", " + rank;
 }
}

Professor as = new Professor("Sauppe", "Allie");
Employee emp = as;
System.out.println(as);
System.out.println(emp);

Allie Sauppe, associate
Allie Sauppe, associate

Groups of Related Objects

Employee[] emps = new Employee[3];
emps[0] = new Professor("Sauppe", "Allie");
emps[1] = new Security("Smith", "John");
emps[2] = new ADA("Yoshizumi", “Becky");

for (int i = 0; i < emps.length; i++) {
 System.out.println(emps[i]);
}

Type conformance allows us to
store multiple, related objects
together in a single data
structure
Subtype polymorphism ensures
that an object behaves
according to its type, rather than
the variable’s type

// prints Allie Sauppe according to the Professor class
// prints John Smith according to the Security class
// prints Becky Yoshizumi according to the ADA class

Java has two steps to get from code to execution
compile time is when Java checks to make sure your code is syntactically valid

Java does not yet know the values of variables

produces an intermediate form of your program known as Java bytecode (i.e., .class files)

this is constantly happening in the background in Eclipse; it is what produces the red underlines

run time is when Java executes your program
Java now knows what the values of the variables are!

can use variables according to the type of the object stored

Subtype Polymorphism

Can reuse code
write a method once, inherit from the class
good to not copy and paste code!

see: loops, methods

Can store objects of related (but different) types in a single data structure
data structures store only one type of object
can use type conformance to store objects of different types that have a common
ancestor

more on this next week

e.g., Employee[] can store objects of type Professor, Lecturer, ADA ...

Advantages of Inheritance

Disadvantage

Might need to hunt for a method definition
Example:

Employee might have a method getName()
can be difficult to know that if you are looking in
the Professor class and the method has not
been overridden

Faculty

Professor Lecturer

Employee

...

Programming Style

The clarity of your code
indicates the clarity of your

thoughts.

• Descriptive, appropriate variable names
• Indentation

• helps to communicate the control flow of your code
• any reasonable code editor will auto-indent

• Commenting the class (required), methods (required), code (as necessary)
• Writing elegant code

• i.e., is there a better, more understandable way to write this piece of code?
• e.g., moving code to a method or loop rather than copying and pasting
• White space
• use blank lines (judiciously) to make code more readable

Java Style: Things to Pay Attention To

Javadoc Method Comments
Accepted convention for formatting
comments for a method

placed above the method
starts with /**
description of method
list of parameters, if any

one on each line, in order of appearance

value returned, if any

/**
 * Finds the zero or more courses currently
 * being offered by a particular department.
 *
 * @param dept The prefix code for the dept
 * @return An array of zero or more courses
 * taught by dept
 */
public Course[] findDeptCourses(String dept) {

...
}

Javadoc Method Comments
You should be able to generate the
method signature based on the
Javadoc comment

/**
 * Finds the zero or more courses currently
 * being offered by a particular department.
 *
 * @param dept The prefix code for the dept
 * @return An array of zero or more courses
 * taught by dept
 */

