
CS 220 Software Design II Spring 2022

In-class Exercises 10

University of Wisconsin - La Crosse Date: April 29

1. As we saw in class, a queue is represented by a List underneath the hood. Of singly linked
list, doubly linked list, and array list, which list structure is best from a runtime perspective for
representing a queue and why?

Solution: Doubly linked list works well since we need to deal with both ends of the list, and
doubly linked list supports O(1) add/remove for both ends. Note, however, that we do not need
to remove from the end of a queue. Thus, a singly linked list with a tail pointer (and no sentinel
node) provides the constant-time access to the end of the list that we need in order to add. (Think
about why that access to the tail is not sufficient to allow removing a node.)

2. In lab, we used an array (not an array list) for implementing a stack. Using an array to represent
a queue is somewhat more difficult. Why? How might we achieve this in the most efficient way
possible? What attribute(s) would you need in the class? What would the methods look like for
enqueue, dequeue, and front? Hint: Do not move elements already in the queue.

Solution: We would need two attributes: one to keep track of the front of the queue (i.e., the value
we would dequeue or report via front), and a second to keep track of the next available index at
which to add. As values are “removed” from the queue, they would be returned, but the elements
wouldn’t be moved in the array, allowing O(1) performance. The array might need to be monitored
for potential expansion (if that behavior was specified) and copying over of elements to a new,
larger array, like with an array list. Note that this approach could not be used with an array list,
since array lists require that the elements start at index 0.

1



3. What is displayed to the console after running the code below? What does the stack looks like
over time?

1 LinkedList <Integer > stack = new LinkedList <>();
2 stack.push (3);
3 for (int i = 1; i <= 5; ++i) {
4 if (peek() % 2 == 0) {
5 stack.push(i);
6 } else {
7 int r = stack.pop();
8 stack.push(i + r);
9 }
10 }
11 while (!stack.isEmpty ()) {
12 System.out.print(stack.pop() + " ");
13 }

Solution:

12, 2, 4,

4. What is displayed to the console after running the code below? What does the queue looks like
over time?

1 LinkedList <Integer > queue = new LinkedList <>();
2 queue.add(3);
3 for (int i = 1; i <= 5; ++i) {
4 if ((i + queue.peek()) % 2 == 0) {
5 queue.add(i);
6 } else {
7 int r = queue.poll();
8 queue.add(i + r);
9 }
10 }
11 while (!queue.isEmpty ()) {
12 System.out.print(queue.poll() + " ");
13 }

Solution:

5, 3, 5, 5,

2



5. Explain how you could use a stack and a queue to determine if the characters in a String form
a palindrome. Note: This solution is not the most efficient way to solve this problem. The problem
is an exercise in understanding stacks and queues.

Solution: Put the first half of the characters in a stack and the second half of the characters in
a queue (taking care with whether the number of characters is even or odd). Then repeatedly pop

a character from the stack and dequeue a character from the queue and compare them. If none
differ, then the String is a palindrom.

3


