
CS 220 Software Design II Spring 2022

In-class Exercises 06

University of Wisconsin - La Crosse Date: March 11

1. Given the SinglyLinkedList class on the attached Reference Classes page, write the instance
method removeAll described below (this method will be located in the SinglyLinkedList class).
Do not use the remove methods you could otherwise assume are available for this class!

/**
* Removes all instances of the given value from the list and returns true.
* If the value is not in the list , the list will remain unchanged and should
* return false.
* @param value The value of the generic type E to remove
* @return true if one or more values were removed , false if nothing was
* removed
*/

1

2. Given the SinglyLinkedList class on the attached Reference Classes page, write the instance
method lastIndexOf described below (this method will be located in the SinglyLinkedList class).

/**
* Returns the last index of the target in the list , or -1 if not found.
* @param target The value of type E to find
* @return The last index (int) of the target in the list , or -1 if not found
*/

2

3. Implement a public method that has a return type of SinglyLinkedList<E> called split

which takes in a given index and splits the list at that index, removing and returning the sublist
created by starting at the index through the end of the list (somewhat similar to substring(int)).
The new sublist must have at least one element in it; an empty sublist means an invalid index was
given. Your method should modify the size attribute as appropriate for the current list, and should
throw an IndexOutOfBoundsException if required. For example, consider an SinglyLinkedList

storing the values [1, 2, 3, null]. Calling split at index 3 would be invalid, at index 2 would
result in the original list looking like [1, 2, null, null] and returning [3], and at index 0 would
result in the original list looking like [null, null, null, null] and returning [1, 2, 3]. Note
that the portrayed sublists returned might have additional null values depending on how the list
grows.

/**
* Splits and returns a new list starting at the given index through the end

of the list.
* @param index An int representing the index to split at
* @return a new SinglyLinkedList <E>
*/

3

Reference Classes

1 public class SinglyLinkedList <E> {
2 private int size;
3 private SingleListNode firstNode;
4
5 public SinglyLinkedList () {
6 size = 0;
7 // assumes the use of a sentinel node
8 firstNode = new SingleListNode(null);
9 }
10
11 private class SingleListNode {
12 private E data;
13 private SingleListNode nextNode;
14
15 public SingleListNode(E i) {
16 data = i;
17 nextNode = null;
18 }
19 }
20 }

4

4. Conceptually, why does it make sense to create the ListNode class as an inner class to the
LinkedList class?

5. We often talk about data structures as the intersection of an interface and an implementation.
Define these two terms.

6. Implement the public void clear method for the SinglyLinkedList class on the previous
page.

/**
* Clears the data from the list.
* @return void
*/

5

