
CS 220 Software Design II Spring 2022

In-class Exercises 05

University of Wisconsin - La Crosse Date: March 4

1. Name one advantage ArrayList gives us as programmers over using an array.

Solution: The programmer no longer needs to manually grow/shrink the array

The programmer no longer needs to manage the array for basic functions (e.g., add at an index)

2. Describe the calculation that allows us to jump directly to any index in an array, skipping over
intermediate indexes.

Solution: starting position of the array + (data type size * index)

3. Describe what problem we encounter when setting up an array list, such that we cannot store
any type of data in our array list. In what piece of code is this problem made manifest?

Solution: The declaration and instantiation of the data array

1

4. Consider the below beginnings of an implementation of the ArrayList class. Implement
a public method that has a return type of ArrayList<E> called split which takes in a given
index and splits the list at that index, removing and returning the sublist created by starting at
the index through the end of the list (somewhat similar to substring(int)). The new sublist
must have at least one element in it; an empty sublist means an invalid index was given. Your
method should modify the size attribute as appropriate for the current list, and should throw an
IndexOutOfBoundsException if required. For example, consider an ArrayList storing the values
[1, 2, 3, null]. Calling split at index 3 would be invalid, at index 2 would result in the original
list looking like [1, 2, null, null] and returning [3], and at index 0 would result in the original
list looking like [null, null, null, null] and returning [1, 2, 3]. Note that the portrayed
sublists returned might have additional null values depending on how the list grows. Bonus: how
can you write this code such that the new array list never needs to grow?

1 public class ArrayList <E> {
2
3 private static int DEFAULT_CAPACITY = 10;
4 private Object data [];
5 private int size;
6
7 public ArrayList(int index) { ... }
8
9 public void add(E e) { ... }
10
11 public boolean add(int index , E e) { ... }
12
13 public E remove(int index) { ... }
14
15 }

Solution:

public ArrayList <E> split(int index) {

if (index < 0 || index >= size) {
throw new IndexOutOfBoundsException ();

}

ArrayList <E> toReturn = new ArrayList <>(size -index);

for (int i = index; i < size; i++) {
toReturn.add(data[i]);
//could also call remove at an index
data[i] = null;
size --;

}

return toReturn;
}

2

