
CS 220 Software Design II Spring 2022

In-class Exercises 03

University of Wisconsin - La Crosse Date: February 18

1. When referring to a folder or file, we can use either absolute paths or relative paths. If the
program is going to run on other people’s computers, which should you use? Why?

Solution: relative path, since absolute paths differ between computers

2. Describe the difference in how text files versus binary files read and write data to/from the
hard drive. Asked another way - how do text and binary files differ in how they interpret the ones
and zeros that make up the file?

Solution:

all chars versus the type of the data

3. Assume we have a 6 digit whole number. Keeping in mind that a char takes up 2 bytes and a
int takes up 4 bytes, how much room would this number take up on disk written out as a string?
How much room would it take up written as an int?

Solution:

int: 4 bytes

string: 12 bytes

1



Consider the file system below for the following problems:

/

usr/ programs/

apps/ Assign02.java

4. How can you refer to the folder apps with an absolute path?

Solution:
/usr/apps/

5. Consider the following code. Write down 1) the line number an exception occurs at, 2)
what exception is thrown, and 3) what the final output to the console is.

1 int value = 0;
2 try{
3 Scanner scan = new Scanner(System.in);
4 value = scan.nextInt (); // assume the input is the value 5
5 int[] arr;
6 arr[3] = value;
7 } catch(InputMismatchException e) {
8 System.out.println("Input isn’t an int!");
9 } catch(ArrayIndexOutOfBoundsException e) {
10 System.out.println("Gone passed the end of the array.");
11 } catch (NullPointerException e) {
12 System.out.println("Accessed a null value.");
13 } finally {
14 System.out.println("The number is " + value);
15 }

Solution:

Accessed a null value.
The number is 5

exception is on line 6
NullPointerException

2



6. Write code to read in the individual double values contained in the text file gallons.txt (do
not use Scanner to read in from the text file, although you can use Scanner for other tasks), where
each value represents a volume in gallons. Write out the values (in the same order, one on each
line) in pints to the file pints.txt. (1 gallon is equivalent to 8 pints) Note that pints.txt might
already have data in there - do not overwrite it! An example of how gallons.txt is structured
is below, along with the output to pints.txt:

gallons.txt

9
2.5
4
3.25
1.15
10

pints.txt

72
20
32
26
9.2
80

Solution:

Text File Solution

1 FileReader fr = new FileReader(new File("gallons.txt"));
2 BufferedReader br = new BufferedReader(fr);
3
4 FileWriter fw = new FileWriter(new File("pints.txt", true));
5 BufferedWriter bw = new BufferedWriter(fw);
6 PrintWriter pw = new PrintWriter(bw);
7
8 String line = br.readLine ();
9
10 while(line != null) {
11 Scanner scan = new Scanner(line);
12
13 int pint = scan.nextDouble () * 8;
14 pw.println(pint);
15
16 line = br.readLine ();
17 }
18
19 br.close();
20 pw.close();

3



7. Write code to read in the individual double values contained in the binary file gallons.bin,
where each value represents a volume in gallons. Write out the values (in the same order, one on
each line) in pints to the file pints.bin. (1 gallon is equivalent to 8 pints) You may overwrite
data in pints.bin. Both files start with the number of data points in the file (compare this to the
text files above) An example of how gallons.bin is structured is below, along with the output to
pints.bin - note that I have included line breaks for readability, but that those would not appear
in a binary file:

gallons.bin

4
9
2.5
1.15
10

pints.bin

4
72
20
9.2
80

Solution: Binary File Solution

1 FileInputStream fis = new FileInputStream(new File("gallons.bin"));
2 DataInputStream dis = new DataInputStream(fis);
3
4 FileOutputStream fos = new FileOutputStream(new File("pints.bin"));
5 DataOutputStream dos = new DataOutputStream(fos);
6
7 int numLines = dis.readInt ();
8 dos.writeInt(numLines);
9 for(int i = 0; i < numLines; ++i) {
10 int pints = dis.readDouble () * 8;
11 dos.writeDouble(pints);
12 }
13
14 dis.close();
15
16 dos.flush();
17 dos.close();

4



Reference Class Diagrams

FileReader

+ FileReader(File f)

...

BufferedReader

+ BufferedReader(FileReader f)

+ void close()

+ int read()

+ String readLine()

...

FileWriter

+ FileWriter(File f)

+ FileWriter(File f, boolean a)

...

BufferedWriter

+ BufferedWriter(FileWriter f)

+ void flush()

+ void close()

...

PrintWriter

+ PrintWriter(BufferedWriter b)

+ void flush()

+ void close()

+ void print(String s)

+ void println(String s)

...

FileInputStream

+ FileInputStream(File f)

...

DataInputStream

+ DataInputStream(FileInputStream f)

+ void close()

+ boolean readBoolean()

+ char readChar()

+ double readDouble()

+ int readInt()

+ long readLong()

...

FileOutputStream

+ FileOutputStream(File f)

+ FileOutputStream(File f, boolean a)

...

DataOutputStream

+ DataOutputStream(FileOutputStream f)

+ void flush()

+ void close()

+ void writeBoolean(boolean b)

+ void writeChar(char c)

+ void writeChars(String s)

+ void writeDouble(double v)

+ void writeInt(int v)

+ void writeLong(long v)

...

Scanner

+ Scanner(File f)

+ Scanner(String s)

+ boolean nextBoolean()

+ byte nextByte()

+ double nextDouble()

+ float nextFloat()

+ int nextInt()

+ long nextLong()

+ short nextShort()

+ boolean hasNext()

+ boolean hasNextBoolean()

+ boolean hasNextByte()

+ boolean hasNextDouble()

+ boolean hasNextFloat()

+ boolean hasNextInt()

+ boolean hasNextLong()

+ boolean hasNextShort()

...

5


