
was educated at King’s College, Cambridge; Imperial College, London; and at 
Warwick University where he received his Ph.D. in computer science in 1974. 
He is currently T. Jefferson Coolidge Professor of Computer Science and Applied 
Mathematics in the School of Engineering and Applied Sciences at Harvard 
University, where he has taught since 1982. Before coming to Harvard he had 
taught at Carnegie Mellon University, Leeds University, and the University of 
Edinburgh.

His work has ranged over several areas of theoretical computer science, 
particularly complexity theory, computational learning, and parallel computation. 
He also has interests in computational neuroscience, evolution and artificial 
intelligence.

He received the Nevanlinna Prize at the International Congress of 
Mathematicians in 1986, the Knuth Award in 1997, the European Association for 
Theoretical Computer Science EATCS Award in 2008, and the 2010 A. M. Turing 
Award. He is a Fellow of the Royal Society (London) and a member of the National 
Academy of Sciences (USA).

�

Steve Senger, Ph.D., Computer Science Department
University of Wisconsin-La Crosse | 1725 State St., La Crosse, WI 54601 
608.785.6805 | email: compsci@uwlax.edu 

Co-sponsored by the 
University of Wisconsin-La Crosse Foundation Inc. 

Department of Computer Science • College of Science and Health

Monday, Oct. 24, 2011

10:30 a.m. Registration 
 Cleary Alumni & Friends Center | UW-L Campus

11 a.m. Symposium
Do Parallel Algorithms and Programs 
Need to be Parameter Aware?
For more than half a century programmers have enjoyed efficiently 
universal sequential languages and algorithms, which permitted them to 
write programs independent of machines. We suggest that for parallel or 
multicore computers this will no longer be generally possible, and that 
the algorithms that run on them will need to be designed to be aware of 
the resource parameters of the particular machines on which they are to 
run. Parameter-free parallel languages or models, and algorithms that 
are oblivious to some parameters for some reason, will continue to have 
roles in restricted domains. We suggest, however, that they will always 
remain inadequate for the full range of tasks that need to be computed.

With parameter-awareness the main promise is that of portable 
algorithms, those that contain efficient designs for all reasonable 
ranges of the basic resource parameters and input sizes. Such portable 
algorithms need to be designed just once, but, once designed, they 
can be compiled to run efficiently on any machine. In this way the 
considerable intellectual effort that goes into parallel program design 
becomes reusable.

To permit such portable algorithms some standard bridging model 
is needed - a common understanding between hardware and algorithm 
designers of what the costs of a computation are. We shall suggest the 
Multi-BSP model as a candidate for this bridging role. We show that 
for several basic problems, namely matrix multiplication, fast Fourier 
Transform, and sorting, portable algorithms do exist that are optimal in a 
defined sense, for all combinations of input size and parameter values for 
this model. 

Leslie Valiant

For further 
information 

about the 
lecture contact:

Schedule of Events
4:30 p.m. Registration 
 Cleary Alumni & Friends Center 
 UW-L Campus

5 p.m. Keynote
Biological Evolution as a Form 
of Learning
Living organisms function according to protein circuits. 
Darwin’s theory of evolution suggests that these circuits 
have evolved through variation guided by natural 
selection. However, the question of which circuits can 
so evolve in realistic population sizes and within realistic 
numbers of generations has remained essentially 
unaddressed. 
 We suggest that computational learning theory offers 
the framework for investigating this question, of how 
circuits can come into being adaptively from experience, 
without a designer. We formulate evolution as a form 
of learning from examples. The targets of the learning 
process are the functions of highest fitness. The 
examples are the experiences. The learning process is 
constrained so that the feedback from the experiences 
is Darwinian. We formulate a notion of evolvability that 
distinguishes function classes that are evolvable with 
polynomially bounded resources from those that are 
not. The dilemma is that if the function class, say for the 
expression levels of proteins in terms of each other, is 
too restrictive, then it will not support biology, while if it 
is too expressive then no evolution algorithm will exist to 
navigate it. We shall review current work in this area. 


