Audio Canvas: An Audio Visualization Tool

A Manuscript
Submitted to
the Department of Computer Science
and the Faculty of the
University of Wisconsin—La Crosse

La Crosse, Wisconsin

by

Christian Strauss

in Partial Fulfillment of the

Requirements for the Degree of

Master of Software Engineering
May, 2022

Audio Canvas: An Audio Visualization Tool

By Christian Strauss

We recommend acceptance of this manuscript in partial fulfillment of this candidate’s re-
quirements for the degree of Master of Software Engineering in Computer Science. The
candidate has completed the oral examination requirement of the capstone project for the
degree.

Dr. Kenny Hunt, PhD Date
Examination Committee Chairperson

Dr. William Petullo, PhD Date
Examination Committee Member

Dr. Allison Sauppé, PhD Date
Examination Committee Member

Abstract

Strauss, Christian, “Audio Canvas: An Audio Visualization Tool,” Master of Software
Engineering, May 2022, (Kenny Hunt, Ph.D.).

This manuscript describes the development of web based audio visualization tool called
“Audio Canvas.” Audio visualizers are created by having some form of audio data animate a
visual object. Audio Canvas is designed to manage, edit, and share these audio visualization
projects.

Acknowledgements

I would like to express my appreciation to my project advisor Dr. Kenny Hunt for his
time, guidance, and support during the length of this project. I would also like thank the
Department of Computer Science at the University of Wisconsin—La Crosse for providing
the knowledge and experience needed to complete this project. I would lastly like to thank
my wife and family for providing me with support and patience during my studies.

i

Table of Contents

Abstract i
Acknowledgments i
List of Figures. v
List of Tables vi
Glossary vii
1. Imtroduction 1
1.1, Overview e 1

1.2, Background 2

1.3, Goals. 2

2. Software Development Process L. 3
2.1, Overview 3

2.2. Life Cycle Model Analysis 3
2.2.1. Waterfall Model 3

2.2.2. Prototyping Model oo 3

2.2.3. Spiral Model 4

2.2.4. Scrum Model 4

2.3. Overview of the Development Process)

3. Design 11
3.1, Overview 11

3.2. UML Class Diagram 11

3.3. Application Interface 14

3.4. Database 15

3.5. User Interface Mockups 0oL 16

3.6. Final User Interface 18

4. Implementation 21
4.1. Technologies Used, 21
4.1.1. Client 21

4.1.2. SEIVer 22

4.1.3. Database 25

4.2, Development 26
4.2.1. Data Management System 26

4.2.2. Application 26

5. Testing 30
5.1, Overview 30

5.2. Verification 30

5.3. Validation oo 30

6. Security 32
6.1. Overview 32

6.2. Authentication and Authorization 32

6.3. Web Security 33

7. Deployment 34
7.1, Overview 34

il

7.2. Mobile Application 34

Conclusion 35
8.1. Overview 35
8.2. Challenges 35
8.3. Learning Experience oo 35
8.4. Future Work 35
Bibliography 37
Appendices 38
10.1. Appendix A: Project Requirements 38
10.2. Appendix B: API Service Details 46
10.3. Appendix C: Graphical User Interface. 55

v

List of Figures

O©Coo~NOUITh, WN PR

Audio Visualizations 1
Kanban Board e 8
UML Class Diagram o e e 12
UML Class Diagram Continued 13
UML Interface Diagram 15
ER Diagram e e 16
User Interface Ul Mockup 17
Project Management Ul Mockup 18
User Interface Ul Mockup 19
Project Management Ul Mockup 20
Using JSX to Manage Menus and Editors 21
Using the Web Audio API to Extract Frequency and Time Domain Audio Data 22
Using the BabylonJS Engine to Initialize the Scene 22
Project Service Registration 24
Project Service Hooks 25
Geometric Primitives 27
Box Primitive Input Structure 27
Audio Mapping 28
Root Mean Square Calculation (RMS) 28
Grouping and Time Animations 29
Time in LFO Calculation. 29
Authorization - Accessing Resources o oo 32
Server APl Access Controls 33
Home Page 55
Discover Page e 55
Register Page e 56
LoginPage e e 56
My Projects Page 57
Collaborative Projects Page 57
Application Page - Components 58
Application Page - Audio Mapping 59
Application Page - Shared Settings and Time Mapping 60

List of Tables

O©Coo~NOUITh, WN PR

Project Management Requirements 7
Sprint Retrospective Example L o oL 10
Projects Service Example 23
Box Height Test Cases Example 31
Authentication Requirementso 38
Project Management Requirements 39
Admin Requirements 40
Audio Input Requirements 41
Layer Requirements 42
Component Requirements e 43
Special Input Requirements e 44
Scene Requirements 45
Mapping Requirements 45
Export Requirements 46
Authentication Service 46
Users Service i e 48
Projects Service e 50
Project Data Service 52
Project ACCess Service 54

Vi

Glossary

Amazon Web Services (AWS)

AWS is a cloud service provider that o ers various on-demand cloud computing platforms.

BabylonJS

BabylonJS is a web 3D graphics engine that uses JavaScript to display graphics on HTML
canvas elements.

FCurve
a FCurve is a function or curve that is used to de ne the animation of an object. This
is done by setting points along a graph.

FeathersJS
FeathersJS is a backend web framework for NodeJS used to develop REST APIs.

Frames Per Second (FPS)

FPS is a computer graphics performance metric that captures the frequency at which
images are displayed.
Frequency Spectrum

The frequency spectrum is audio data pertaining to the distribution of amplitudes over
each frequency component (20hz-20kHz).
Heroku

Heroku is a platform cloud service provider that enables people to build and run appli-
cations in the cloud.
LaTeX

LaTeX is a document markup language and document preparation systems for the TeX
typesetting program.
MediaRecorder

The MediaRecorder interface is a part of the web MediaStream Recording API that is
used to record videos on the web.
Mesh Object

A Mesh Object is a 3D shape represented as a set of vertices and triangles.

Vii

MongoDB

MongoDB is a document-based NoSQL database system, capable of data persistence.

MongoDB Atlas

MongoDB Atlas is a cloud based database web service that fully manages the deployment,
scaling, and maintenance of a MongoDB instance.
Netlify

Netlify is a cloud service provider that o ers hosting of static web sites and serverless
functions.
NodeJS

NodeJS is a backend JavaScript engine, capable of running JavaScript code outside of a
browser.
OAuth

OAuth is a standardized authorization protocol used on the web for applications to grant
access to information.
ReactJS

ReactJS is a frontend JavaScript library, capable of building modular, component-based
user interfaces.
React Native

React Native is framework that utilizes ReactJS to build mobile applications on both
Android and I0S in a single codebase.
REST API

A REST API is an application programming interface that conforms to the representa-
tional state transfer architectural style.
WebGL

WebGL is a web graphics API that enables JavaScript to run instructions on graphic
processing hardware.
WebView

WebView is a React Native component used to display web pages inside mobile applica-
tions.

viii

1. Introduction

1.1. Overview

This project aims to create a software system that enables users to produce, manage,
share, and export graphical visualizations of audio streams. Audio visualizations are com-
puter generated animated graphics that are rendered in a way that synchronizes to audio.
These visualizations can range from simple animated graphs to complex morphing objects
that move over time. These visualizations are rendered in real time by taking a live audio
source as an input and applying a set of user-generated rendering rules to produce a dynamic
image that is a ected by characteristics of the audio stream. Hence, the graphics can look
drastically di erent depending on the audio fed into it. Applications of such visualizations
include music videos, livestreams, podcasts, advertisements, and other forms of visual me-
dia. Figure 1 shows four examples of audio visualizations that demonstrate the variety of
renderings available.

The visualizer supports rendering 2D and 3D geometric shapes, text, images, and pat-
terns. Each graphical component has geometric characteristics that determine the position,
rotation, and scale in either 2D or 3D space. Each component also has properties that a ect
the texture or material of the object. Users are thus able to control the color and texture
of the animated visuals. Static characteristics are set to a constant value and remain xed
throughout the audio feed. Dynamic characteristics change with respect to the selected audio
source or, alternatively, be programmatically changed over time.

The audio source can be an audio le or a microphone input. The audio stream'’s volume,
frequency, and time domain signature can be connected to any of the various graphical
properties that determine visualized rendering. These characteristics drive how the visualizer
looks by changing a visual characteristic of the image. For example, we can extract the
volume of an audio input and use it to determine the size of a visual component at a specic
point in time.

(@) 2D Elements (b) Mesh

(c) Objects (d) Image and Text

Figure 1. Audio Visualizations

1.2. Background

A number of professional motion-e ects software packages support the creating and man-
agement of audio-visual animations. Motion, Blender, and Adobe After E ects allow a user
to create a multitude of di erent types of computer graphics including Im making, 3D mod-
els, virtual reality, video games, and other use cases. In these tools, users are able to create
mesh objects that are then animated through the use of FCurves. FCurves enable a user to
map audio data to a particular mesh object property. FCurves accomplish this by specifying
keyframes and interpolating the values between those keyframes over time. An audio stream
can be baked to these FCurves to animate a property with respect to the audio stream
provided [4]. Professional motion-e ects software packages are computer resource intensive
programs due to the way they render animations. Con guring audio-visuals in these tools
can also be technical and require some expertise.

For users that do not have the computer resources or expertise necessary to make audio-
visuals in professional motion e ects software, applications such as Renderforest, Specterr,
and STAELLA exist. These applications reduce the complexity of managing meshes and
FCurves by providing preset animation routines. These presets already contain all the visual
components and audio mappings necessary to create an audio visualizer. All the user needs
to do is choose a preset visualizer and provide the audio source. These applications enable
users to create audio-visuals for their content quickly and easily.

Professional motion-e ects software packages have a steep learning curve, require hard-
ware that is capable of extensive graphical processing, and are time consuming to use. Preset
animation applications are easier to use and requires less capable hardware support but fails
to provide the customizability that many users want. This project aims to strike a balance
between these di erent methods of creating audio visualizations.

1.3. Goals

This software system is designed with simplicity in mind. An intuitive user interface
should allow a user without expertise to create an image with motion-e ects tied to music
and/or speech.

This software system is also designed with portability in mind. This means making the
system available on a wide range of computer devices. This system will allow a user to create
an audio-visual project on one machine, save it, and pick up where they left o on another
machine.

It is also important to note this software system is also designed with emphasis on
collaboration and community building. This system will allow a user to connect with other
users and groups, inspire one another, and create new audio-visuals. When starting a new
creative project, learning from the examples of others can help from a creativity and technical
perspective. This system will not only be capable of creating audio visualizations, but contain
project management infrastructure needed to browse, share, view, and edit projects created
in the system. A user will be able to share a project with a di erent user and allow that
other user to work on the same project.

2. Software Development Process

2.1. Overview

| rst decided to choose an appropriate software development life cycle model for project
development. Software development life cycle models describe a series of phases of activities
performed to construct a software system [6]. Each software development model has distinct
characteristics that may or may not be suitable for a particular product. Several software
development life cycle models were considered for this project. This section discusses these
considerations and the decision to adopt a modi ed Scrum Model for this project.

2.2. Life Cycle Model Analysis
2.2.1. Waterfall Model

The Waterfall Model is a software development life cycle model that de nes a straight
sequence of activities [6]. Each phase must be complete before moving on to the next phase
as subsequent phases are dependant on prior phases. This model starts with a requirement
gathering phase where product requirements are captured. Once all requirements are cap-
tured and understood, the system is designed to meet those requirements. Once the design
is fully understood, the system is then implemented. Once the system is fully implemented,
it is tested. When testing is complete, the system is deployed and maintained.

The Waterfall Model was considered for use in this project but was not chosen due to
its strict unidirectional ow through its phases. At project inception, | was unclear on
various technical issues related to graphical rendering and these issues might cause me to
rethink certain features. | was also unclear on the graphical performance | could expect
from the various devices | was targeting for deployment. For instance, would the browser be
capable of rendering graphics while simultaneously processing audio data? If so, what are
the performance capabilities of such actions, and how will di erent hardware handle this?
Since a proper architectural design depended to some degree on how these questions were to
be answered, | required a more dynamic approach to software development.

2.2.2. Prototyping Model

The Prototyping Model is a software development life cycle model that uses the devel-
opment of prototypes to better acquire and validate requirements [6]. This model is useful
when product requirements are not fully known or understood. This model begins with an
initial product requirement gathering phase, but does not require the product requirements
to be fully understood at this point. Once that initial set of product requirements are known,
the product is broken down into subsystems.

Prototypes are then built for each piece and evaluated by the customer. This process of
prototype development followed by customer evaluation is repeated throughout the project
until the customer is fully satis ed with all partial prototypes. This gives the customer
the opportunity to further re ne product requirements. Once the customer is satis ed, the
product requirements are now fully known. The di erent prototypes are then integrated into
the nal product where it can be tested, deployed, and maintained.

The Prototyping Model was also considered for this project but was not chosen due to its
customer evaluation and acceptance steps. The prototyping process would have been bene-
cial for this project to uncover some of the previously stated unknowns and fully capture
project requirements. However, the customer evaluation step of this model is unhelpful for
this project since the customer and developer are the same person. This model also requires
customer acceptance before product integration begins. This could potentially introduce
scope creep and extend product development. As the customer of the product, it would be
di cult to determine at what point the prototypes are su cient to progress. If for whatever
reason | was not fully satis ed with a particular prototype, | could spend more time on its
details rather then higher priority items. | could of recruited customers for testing purposes
to make this model work, but opted for the Scrum model as it seemed to be a better project
L.

2.2.3. Spiral Model

The Spiral Model is a software development life cycle model that is known for its unique
risk management feature [6]. This model incrementally builds product features in iterations
known as spirals. Each spiral consists of four steps: identify objectives, risk analysis, de-
velopment, and evaluation. When identifying objectives, precisely what is to be developed
during the iteration is identi ed and understood. After the objectives have been identi ed,
an in-depth risk analysis is performed on them. Risk analysis involves nding the potential
risks of adding the objectives to the software system and mitigating them appropriately.
This process includes the development of prototypes to better understand what risks exist
and troubleshoot solutions. After risk analysis is complete, the objectives are developed
and tested. Finally, the objectives are evaluated by the customer. This step gives the cus-
tomer the chance to re ne product requirements. The Spiral Model is very thorough in
its approach to software engineering. This e ort comes at a large cost in time. The risk
assessment featured in the model is suitable for large scale, risk averse applications.

The Spiral Model was also considered for this project but was not chosen due to its cost.
This risk analysis would have been bene cial for this project to determine and mitigate
some risks of adding product features. For instance, an in depth analysis of how adding a
particular feature would a ect the overall performance of rendering process could of been
helpful. However, this risk analysis can be unpredictable in regards to time estimation.
Time management is important for this project to meet the project deadline. This project,
being smaller in scale, can take on a little more risk building product features to improve
throughput. The evaluation step of the spiral o ers a check point with the customer to
ensure the product is being developed appropriately. This step is not appropriate for this
project as well due to what was discussed in the Prototyping Model consideration.

2.2.4. Scrum Model

The Scrum Model is a software development life cycle model that uses an agile approach
for developing innovative products. The e orts are divided into three di erent roles: product
owner, scrum master, and development team. The product owner is responsible for what
is developed and in what order. The scrum master is responsible for guiding the team in

following the scrum model. The development team is responsible for designing, building,
and testing the product [9].

The Scrum Model de nes several activities and artifacts. An initial set of project re-
quirements are gathered and added to a product backlog. The product is then built in
iterations known as sprints. Each sprint begins with sprint planning. During planning, a
set of tasks are moved from the product backlog to the sprint backlog. The sprint is then
executed. The sprint backlog tasks are designed, built, and tested at this time. Each day, a
stand-up meeting takes place to help organize the team and provide status updates. At the
end of the sprint, a sprint review with the customer takes place to evaluate what happened
during the sprint. This o ers a time for the customer to voice opinions about the work
completed and future enhancements. It is ultimately up to the product owner to decide
whether these opinions make it into the product requirements and their urgency. It is also
up to the product owner to decided if the complete sprint work is releasable as is. This is
an important distinction to that of Prototyping and the Spiral Model. The customer can
not directly impact the release of increments. They can only in uence future work and voice
concerns. A sprint retrospective also takes place to evaluate what is going well and what
needs improvement from a process standpoint. At the end of the sprint, the work completed
is released as an increment. The last process of a sprint is product backlog grooming. This
is where tasks are added, removed, and prioritized for upcoming sprints. These iterations
are completed throughout the life of the product's development.

A modi ed Scrum Model was used for this project due to its incremental dynamic nature.
This project required exibility in regards to product requirements. The sprint review ad-
dressed this need by o ering a time to revise those requirements. This model's incremental
approach does this without sacri cing the ability to progressively release completed function-
ality. This project also required a model that was punctual in regards to time management.
The ability to pull more or less tasks into each sprint proved to be necessary to complete
the project in its given time frame. | have some prior experience with Agile software devel-
opment which also played a role in the decision to follow this model. Dr. Kenny Hunt, the
project advisor, played the role of ScrumMaster by ensuring scrum processes and artifacts
were followed. | played the roles of the product owner, ScrumMaster, and developer. As
such, minor adjustments to this model took place to accommodate this. For instance, there
were no formal daily-standup meetings. The point of these meetings is to ensure the team
is all on the same page with regards to the sprint work at hand. My project advisor and |
also assumed the role of the customer for this project. As such, the sprint review served as
a time to re ect on completed work and determine if it was fully capturing the goals for this
project.

2.3. Overview of the Development Process

As the product owner, | gathered the initial set of product requirements. These require-
ments met my initial vision for the product and were captured as user stories. User stories
are informal descriptions of requirements written from the perspective of the end user. Each
of these user stories was also associated with a list of acceptance criteria along with an index
to support traceability. These user stories served as a good starting place to help better
understand what this software system was trying to achieve. Table 1 shows an example

5

of how project management requirements were captured. A complete listing of all project
requirements can be found in Appendix A.

As a user, | would like to be able to create a project, so | can save m\
visualizer for future reference.

User provides project information { project is created
User provides illegitimate information { Error message

Notes: Project information - (name, visibility { public or private)

As a user, | would like to be able to open a project, so | can view the
visualizer.

User clicks open { project is opened

As a user, | would like to be able to edit a project, so | can change the
name or visibility.

User edits project name or visibility { project is updated

As a user, | would like to be able to delete a project, so | can remove i
from my list.

User clicks delete { project is deleted

As a user, | would like to share my project with another user, so we can
collaborate on the same project or enable the other user to view a private
project.

User can enter in another user's email address to share

\User not found" error message if user with email does not exist
Acceptance Criteria User can specify if other user has read or write privileges to the project
Other user can view the project if they have read privileges.

Other user can edit the project if they have write privileges.

Notes: Project information - (name, visibility { public or private)

Table 1. Project Management Requirements

One of the key requirements of this system is the ability to manage audio-visual projects.
As a result, a user needs to be able to create, view, edit, and delete projects. This system
must also support collaboration, such that users must be able to share an audio-visual with
one another. Also, a user needs to be able to determine whether the project is visible to all
users or if only speci ed users can access it.

In order to make an audio-visual, the audio sources must be specied. The system
therefore needs to enable users to manage their audio sources by creating, viewing, editing,
and deleting audio inputs. The system needs to support both audio les and microphones
as audio inputs. For audio le inputs, the system needs to support basic audio controls:
play/pause and seek functionality.

The system needs to support creating and customizing graphs that map to data points
collected from an audio input. The system needs to be able to create and customize a line
chart: typically used for time domain waveform information. The system also needs to be
able to create and customize a bar chart: typically used to illustrate the frequency spectrum.

The system needs to support maintaining mesh objects: cube, sphere, polyhedron, etc.
As a result, a user needs to be able to create, edit, and delete these mesh objects. These
mesh object primitives need to be able to be customized with relevant properties: width,
height, material, etc. These properties also need to be able to be manipulated by audio data.
These primitives need to be able to be grouped together to make increasingly more complex
objects. These objects also need to be able to perform basic geometric transforms: position,
rotation, and scale.

Any sort of video media would not be complete without images and text. The system
needs to support adding and removing images and text from the visual.

It makes sense to be able to export the visual to a video. The system needs to support
the ability to record the visual and export it to a le.

The product backlog is an emergent, ordered list of what is needed to improve the product
[10]. This list was populated prior to the initial sprint with the initial product requirements.

As the project was developed, new requirements were added to the project backlog. This
occurred at the end of each sprint during product backlog grooming. This entailed adding,
removing, and reordering tasks in order of priority. As the product owner, | determined
the priority of each task. Emergent, critical product features were given higher priority.
For example, tasks that involved in the management of users and projects were completed
rst. Then priority shifted towards creating the interface responsible for generating audio
visualizations. More details on how the project work was prioritized will be discussed in

7

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary
	Introduction
	Overview
	Background
	Goals

	Software Development Process
	Overview
	Life Cycle Model Analysis
	Waterfall Model
	Prototyping Model
	Spiral Model
	Scrum Model

	Overview of the Development Process

	Design
	Overview
	UML Class Diagram
	Application Interface
	Database
	User Interface Mockups
	Final User Interface

	Implementation
	Technologies Used
	Client
	Server
	Database

	Development
	Data Management System
	Application

	Testing
	Overview
	Verification
	Validation

	Security
	Overview
	Authentication and Authorization
	Web Security

	Deployment
	Overview
	Mobile Application

	Conclusion
	Overview
	Challenges
	Learning Experience
	Future Work

	Bibliography
	Appendices
	Appendix A: Project Requirements
	Appendix B: API Service Details
	Appendix C: Graphical User Interface

