
Programming: Data and
Interaction

: Feb. 23, 1994
- year: 1994
- month: 2
- day: 23

UWL as Data

students

- birthday

Calculating a student’s age: Write out instructions to
calculate a student’s age, given their birthday (i.e., year,
month, day) and a value for today’s date. Avoid using
words like “before” or “after”; instead, use words for
numerical comparison (e.g., “greater than”, “less than or
equal to”). Test your instructions with the following
possibilities for today’s date:

March 26, 2016
January 26, 2016
February 22, 2016
February 24, 2016
February 23, 2016

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

: Feb. 23, 1994
- year: 1994
- month: 2
- day: 23

students

- birthday

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

1. 2016 - 1994 = 22

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

1. 2016 - 1994 = 22
2. a. 2 > 3? no

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

1. 2016 - 1994 = 22
2. a. 2 > 3?
 b. 2 = 3 and 23 > 26?

no
no

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

1. 2016 - 1994 = 22
2. a. 2 > 3?
 b. 2 = 3 and 23 > 26?
 c. neither steps 2.a. or 2.b. performed?

no
no

yes

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 3 day: 26

1. 2016 - 1994 = 22
2. a. 2 > 3?
 b. 2 = 3 and 23 > 26?
 c. neither steps 2.a. or 2.b. performed?
 answer = 22

no
no

yes

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

today’s date:
year: 2016 month: 2 day: 22

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

1. 2016 - 1994 = 22

today’s date:
year: 2016 month: 2 day: 22

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

1. 2016 - 1994 = 22
2. a. 2 > 2? no

today’s date:
year: 2016 month: 2 day: 22

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

1. 2016 - 1994 = 22
2. a. 2 > 2?
 b. 2 = 2 and 23 > 22?

no
yes

today’s date:
year: 2016 month: 2 day: 22

UWL as Data

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

birthday:
year: 1994 month: 2 day: 23

1. 2016 - 1994 = 22
2. a. 2 > 2?
 b. 2 = 2 and 23 > 22?
 answer = 22 - 1 = 21

no
yes

today’s date:
year: 2016 month: 2 day: 22

UWL as Data

birthday:
year: 1994 month: 2 day: 23

1. 2016 - 1994 = 22
2. a. 2 > 2?
 b. 2 = 2 and 23 > 22?
 answer = 22 - 1 = 21
 c. neither steps 2.a. or 2.b. performed?

no
yes

today’s date:
year: 2016 month: 2 day: 22

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

no

1. Subtract the birthday year from today’s year.
2. a. If the birthday month is greater than

today’s month, then subtract one from the
result of step 1 to obtain the final answer.

b. If the birthday month is the same as
today’s month, and the birthday day is
greater than today’s day, then subtract one
from the result of step 1 to obtain the final
answer.

c. If you do not perform steps 2.a. or 2.b., then
the result of step 1 is the final answer.

UWL as Data

when the birthday month
has not yet occurred

when the birthday month
is today’s month, but the

birthday day has not yet occurred

when the birthday
has already passed

UWL as Object-Oriented Data

students

professors

Lorem Ipsum
Viderer voluptua adolescens et vim. Insolens
signiferumque ne quo, nusquam signiferumque
est ei, assum altera senserit ei his. In pri mutat
affert everti, vim ut augue eruditi. Mei velit
poster cu, malis ponderum an sed, te melius
vidisse duo.

classes

- first name
- last name
- department
- list of classes this semester

- first name
- last name
- major
- list of classes this semester

- department (e.g., CS)
- number (e.g., 120)
- section (e.g., 1)
- professor of record
- list of students enrolled

- display schedule of classes

- calculate age
- display schedule of classes
- calculate classes left

- calculate number of seats left
- order students by grade

Objects Attributes Methods

UWL as Object-Oriented Data

students

professors

Lorem Ipsum
Viderer voluptua adolescens et vim. Insolens
signiferumque ne quo, nusquam signiferumque
est ei, assum altera senserit ei his. In pri mutat
affert everti, vim ut augue eruditi. Mei velit
poster cu, malis ponderum an sed, te melius
vidisse duo.

classes

Objects objects/classes: allows us to organize data and
actions to be performed on that data based on real-
world phenomena

Comprised of two parts:
1. attributes/data members: data that describes the
object

2. methods/functions: instructions for calculations that
can be performed on the object’s attributes

- calculate age

- display schedule of classes

- display schedule of classes
- calculate classes left

- calculate number of seats left
- order students by grade

UWL as Object-Oriented Data

students

professors

Lorem Ipsum
Viderer voluptua adolescens et vim. Insolens
signiferumque ne quo, nusquam signiferumque
est ei, assum altera senserit ei his. In pri mutat
affert everti, vim ut augue eruditi. Mei velit
poster cu, malis ponderum an sed, te melius
vidisse duo.

classes

- first name
- last name
- department
- list of classes this semester

- first name
- last name
- major
- list of classes this semester

- department (e.g., CS)
- number (e.g., 120)
- section (e.g., 1)
- professor of record
- list of students enrolled

Objects Attributes Methods

- calculate age

Methods are a named set of instructions

Method: calculating a person’s age (given their birthday and today’s date)
instruction 1: subtract the person’s birth year from the current year

instruction 2: determine which part of instruction 2 (a, b, or c) to execute and perform it

Methods

statement: the unit of instruction in programming
enables us to give commands to the computer

Crux of all programming languages

Programming is about the use of statements to solve problems

In Java, statements always end with a semicolon

Statements

<instruction 1>;
<instruction 2>;
<instruction 3>;

Program Structure

/**
 * Our first program
 */
public class ExampleClass {

public static void main(String[] args) {

// Your code goes here!

}

}

Program Structure: Class

public class ExampleClass {

}

/**
 * Our first program
 */

public static void

// Your code goes here!

}

Provides a name for the program

One program per class

For now, always created with
public class <className>

replace <className> with the
program name

<className> must match the name of
the file!

Program Structure: main Method

public static void main(String[] args) {

}

/**
 * Our first program
 */
public class ExampleClass {

// Your code goes here!

}

Denotes where the program will
start executing

Only one main method per program

Always created with
public static void
main(String[] args)

Program Structure: Comments

/**
 * Our first program
 */

// Your code goes here!

public class ExampleClass {

public static void main(String[] args) {

}

}

Allows us to annotate our program
not interpreted as code/instructions

completely ignored by the computer

Comments are often inserted on
their own line(s)

Definition: Comments

inline comment

// Begins with two slashes; this comment lasts until the end of the line

block comment

/**
 * This is a block comment.
 * Typically used at the top of a class file or before methods,
 * and can span multiple lines.
 * Starts with a single slash followed by an asterisk,
 * and ends with an asterisk followed by a slash.
 */

Program Structure: Code Blocks

Defined by matching opening and
closing curly bracket (e.g., { & })

Can be nested
innermost opening curly bracket
matches innermost closing curly
bracket

/**
 * Our first program
 */
public class ExampleClass {

public static void main(String[] args) {

// Your code goes here!

}

}

on to
data and interaction

How can I take the data I have
and transform it into the

data I need?

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

Data

42
3.14159

numbers

true
false

logical valuestext

“Carpe
Diem”

Good for data not easily represented by numbers
e.g., names, majors, descriptions

string literal: a sequence of characters that should be interpreted as data, not
instructions

colloquially, we call these strings

Textual Data

Strings

"This is a string."

notice the
quotes

Quotes define the beginning and end of a string
are not part of the string itself

Can include any standard characters
e.g., numbers, spaces, punctuation

Called a string literal since the data is exactly what is stored between quotes

Allows us to communicate textually with a Java program
Java produces output with System.out (sometimes referred to as standard output)

Java reads in input with System.in (sometimes referred to as standard input)

Console

public class ExampleClass {
public static void main(String[] args) {

// Your code goes here!

}
}

>

Definition: String Output

print statement: prints <string> to the console

System.out.print(<string>);

println statement: prints <string> to the console, then moves to the next line

System.out.println(<string>);

Nota Bene (N.B.): anything
with angle brackets should be

replaced by something

N.B.: the rest of the statement
needs to be exactly as shown

re: capitalization, spelling

Printing Strings

public class Name {
public static void main(String[] args) {

}
}

System.out.print("Allie Sauppe");

Allie Sauppe

>
>

>>

Printing Strings

public class Name {
public static void main(String[] args) {

System.out.print("Allie Sauppe, CS");

}
}

Allie Sauppe, CS

>
>

> >

Printing Strings

public class Name {
public static void main(String[] args) {

System.out.println("Allie Sauppe");

}
}

Allie Sauppe

>
>

>
>

Instructions start executing in main method

Execute one at a time, in order, starting at top of main

Order matters!
changing the order of instructions will often change the functionality of the program

particularly important when printing to console — cannot go backwards

Sequential Execution

Printing Strings

public class Name {
public static void main(String[] args) {

System.out.print("Allie Sauppe");
System.out.print(", CS");

}
}

Allie Sauppe

>

, CS

>

> >

>
>

Printing Strings

public class Name {
public static void main(String[] args) {

System.out.print(", CS");
System.out.print("Allie Sauppe");

}
}

, CS

>

Allie Sauppe

>

> >

>
>

Printing Strings

public class Name {
public static void main(String[] args) {

System.out.print("Allie Sauppe");
System.out.println(", CS");
System.out.print("UW-La Crosse");

}
}

Allie Sauppe, CS
UW-La Crosse

>
>

>

>
>

>

>

>

public class Name {
public static void main(String[] args) {

System.out.println("I'll be back.");
System.out.print("- The Terminator");

}
}

Use print and println statements to display the following:
"I'll be back."
- The Terminator

Exercise: Adding Quotation Marks

public class Name {
public static void main(String[] args) {

System.out.println(""I'll be back."");
System.out.print("- The Terminator");

}
}

this will
not work!

Allows us to escape the string with a backslash (the escape character)

Escape character + next character are interpreted together, non-literally
form an escape sequence

Common escape sequences:
\" //prints a double quotation mark
\' //prints a single quotation mark
\n //prints a newline
\t //prints a tab

Escape Character

Allows us to escape the string with a backslash (the escape character)

Escape character + next character are interpreted together, non-literally
form an escape sequence

Common escape sequences:
\" //prints a double quotation mark
\' //prints a single quotation mark
\n //prints a newline
\t //prints a tab
\\ //prints a backslash

Escape Character

Use print and println statements to display the following:
"I'll be back."
- The Terminator

Example: Using Escape Sequences

public class Name {
public static void main(String[] args) {

System.out.println("\"I'll be back.\"");
System.out.print("- The Terminator");

}
}

variable: a piece of computer memory that holds data

Two parts to every variable:
1. identifier: the name by which we refer to the variable

2. data type: the type of data the variable holds (e.g., string, number, boolean)

Variables

identifier: name we use to refer to parts of code
e.g., variables, classes, methods

Must follow a few rules:
start with an alphabetic character (a-z, A-Z), underscore (_), or dollar sign ($)

contain only alphanumeric characters (a-z, A-Z, 0-9), underscore (_), or dollar sign ($)

Should be descriptive

No spaces!
use camelcase to name variables

Identifiers

Might want to give identifiers containing multiple words
mybirthday
yourbirthday

camelcase: only first letter of each word is uppercase
MyBirthday //capitalize first letter for classes
myBirthday //lowercase first letter for variables, methods

Camelcase

Case matters
mybirthday, myBirthday, MyBirthday and MYBIRTHDAY are all unique variable names

Identifiers cannot be reserved keywords

Identifiers

public
protected
private
static
void
final

int
double
boolean
new
return
...

data type: the type of data the variable holds; defines what actions can be
performed on it

e.g., we can divide one number by another, we can’t divide one string by another

Cannot be changed once variable is created

Data Type

Two categories: primitive type and class type

Types of Data Type

represents basic data types

examples:
char //holds a single character
int //holds integer values
double //holds decimal values
boolean //holds true/false values

Primitives Classes

represents more complex data

examples:
String //** holds textual data
Scanner //reads input
Date //represents day/month/year
Math //complex mathematical ops

Two parts to variable use:
1. declaring the variable: defines the variable’s data type and identifier

2. initializing the variable: sets the variable to some value; sets it up to be used

Variables must be...
declared before they can be initialized

initialized before they can be used

Can be done separately or together

Declaration must happen exactly once for each variable

Using Variables

Definition: Variable Declaration

declare a single variable

<dataType> <identifier>;

declare multiple variables of the same type

<dataType> <identifier>, <identifier>, <identifier>;

N.B.: remember, anything in angle
brackets should be completely

replaced! (including the brackets)

Example: Variable Declaration

declare a single variable

int age;
double height;
String name;

declare multiple variables of the same type

int day, favoriteNumber;
double temp, weight;
String firstName, lastName, middleName;

Example: Variable Declaration

public class Person {
public static void main(String[] args) {

int age;
double height;
String firstName;

}
}

memory

firstName (String)

height (double)

age (int)

>
>
>
>

Definition: Primitive Variable Initialization

initialize a primitive variable

<identifier> = <value>;

N.B.: the data type associated
with the identifier must match

the data type of the value

Example: Primitive Variable Initialization

initialize a primitive variable

firstName = "James";

this works because we are
initializing a String variable

with a String value

Example: Primitive Variable Initialization

public class Person {
public static void main(String[] args) {

String firstName, lastName;
int age;

firstName = "James";
age = 42;

}
} age (int)

lastName (String)

firstName (String)

>
>

>

memory

"James"

>
>

42

Definition: Combining Declaration & Initialization

declare & initialize a single primitive variable

<dataType> <identifier> = <value>;

declare & initialize multiple primitive variables of the same type

<dataType> <identifier> = <value>, <identifier> = <value>, <identifier>;

Example: Combining Declaration & Initialization

declare & initialize a single primitive variable

String firstName = "James";

declare & initialize multiple primitive variables of the same type

String firstName = "James", lastName = "Kirk", middleName;

public class Person {
public static void main(String[] args) {

String firstName = "James", middleName, lastName = "Kirk";

middleName = "Tiberius";

}
}

Example: Combining Declaration & Initialization

Definition: String Output

print statement: prints <String> to the console

System.out.print(<String>);

println statement: prints <String> to the console, then moves to the next line

System.out.println(<String>);

Printing Strings

public class Person {
public static void main(String[] args) {

String firstName = "James", lastName = "Kirk";
int age = 42;

System.out.println(firstName);
System.out.println("James");
System.out.println(lastName);
System.out.println("Kirk");
System.out.println(age);
System.out.println("42");

}
}

James
James
Kirk
Kirk
42
42

Definition: Primitive Variable Assignment

assign a new value to a variable

<identifier> = <value>;

N.B.: the data type associated
with the identifier must match

the data type of the value

Variable initialization versus assignment
initialization is the first time a value is assigned
to a variable

assignment is overwriting the current value
with a new value

In practice, look the same

Primitive Variable Assignment

public class Person {
public static void main(String[] args) {

String firstName = "James", lastName = "Kirk", middleName;

System.out.println(firstName);
System.out.println(lastName);

firstName = "Jim";

System.out.println(firstName);

}
}

James
Kirk
Jim

middleName (String)

lastName (String)

firstName (String)

memory

"James"

"Kirk"

"Jim">

>
>

>
>
>

Primitive Variable Assignment

public class Person {
public static void main(String[] args) {

String firstName = "James", lastName = "Kirk", middleName;

System.out.println(firstName);
System.out.println(lastName);

firstName = lastName;

System.out.println(firstName);

}
}

James
Kirk
Kirk

middleName (String)

lastName (String)

firstName (String)

memory

"James"

"Kirk"

"Kirk">

>
>

>
>
>

Text is one of our fundamental units of data

Several ways we might want to manipulate our text

Examples:
change letters to all upper or lowercase

isolate a small part of the text

find a particular letter or number in a text

replace some part of the text

String Methods

Strings

"This is a string."T gh i s si s a t r i n ." "
10 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

these are the index values for the String

Methods have four main characteristics we should know

For any given method:
what is it called?

what does it do?

what type of input does it need? (called parameters)

what type does it give back? (i.e., what does it return?)

Methods

Definition: String Methods

+: concatenates two String values together

<String> + <String>;

length: returns the length of <String> (i.e., how many characters)

<String>.length();

substring: returns part of <String> from index <int1> to index <int2>

<String>.substring(<int1>, <int2>);

concatenate: to join two Strings together into one String

arguments: the two Strings to join together

returns: a single String

Concatenation (+)

<String> + <String>;

String str1 = "Hello", str2 = "World";

String exampleConcat = str1 + str2;
System.out.print(exampleConcat);

HelloWorld

Definition: String Methods

+: concatenates two String values together

<String> + <String>;

length: returns the length of <String> (i.e., how many characters)

<String>.length();

substring: returns part of <String> from index <int1> to index <int2>

<String>.substring(<int1>, <int2>);

concatenate: to join two Strings together into one String

arguments: the two Strings to join together

returns: a single String

Concatenation (+)

<String> + <String>;

String str1 = "Hello", str2 = "World";

String exampleConcat = str1 + str2;
System.out.print(exampleConcat);

HelloWorld

memory

str1 (String)

"Hello"

str2 (String)

"World"

exampleConcat (String)

"HelloWorld"
>

>
>

>

concatenate: to join two Strings together into one String

arguments: the two Strings to join together

returns: a single String

Concatenation (+)

<String> + <String>;

String str1 = "Hello", str2 = "World";

String exampleConcat = str1 + " " + str2;
System.out.print(exampleConcat);

Hello World

memory

str1 (String)

"Hello"

str2 (String)

"World"

exampleConcat (String)

"Hello World"
>

>
>

>

arguments: none

returns: the length (<int>) of the String (i.e., the number of characters)

length

<String>.length();

String exampleStr = "Hello, world!";

int len = exampleStr.length();
System.out.print(len);

13

memory

len (int)

13

exampleStr (String)

"Hello, world!"

>

>

>
>

arguments: the beginning index <int1> (inclusive), the ending index <int2> (exclusive)

returns: the String specified by the beginning and end index

substring

<String>.substring(<int1>, <int2>);

String exStr = "All the king's men.";

String exSubStr = exStr.substring(4, 14);
System.out.print(exSubStr);

the king's

memory

exSubStr (String)

"the king's"

exStr (String)

"All the king's men.">

>

>
>

Definition: String Methods

indexOf: returns the index (<int>) of the first occurrence of <char>

<String>.indexOf(<char>);

charAt: returns the <char> present at index <int>

<String>.charAt(<int>);

replaceAll: replace every occurrence of <String1> with <String2>

<String>.replaceAll(<String1>, <String2>);

arguments: the char to look for <char> (case sensitive!)

returns: the index (<int>) of the first occurrence of char

indexOf

<String>.indexOf(<char>);

String exampleStr = "Hello, home!";

int index = exampleStr.indexOf('h');
System.out.print(index);

memory

index (int)

exampleStr (String)

“Hello, home!”>

>

arguments: the char to look for <char> (case sensitive!)

returns: the index (<int>) of the first occurrence of char

indexOf

<String>.indexOf(<char>);

String exampleStr = "Hello, home!";

int index = exampleStr.indexOf('h');
System.out.print(index);

7

memory

index (int)

7

exampleStr (String)

“Hello, home!”

>
>

arguments: the char to look for <char> (case sensitive!)

returns: the index (<int>) of the first occurrence of char

indexOf

<String>.indexOf(<char>);

String exampleStr = "Hello, home!";

int index = exampleStr.indexOf('H');
System.out.print(index);

memory

index (int)

exampleStr (String)

“Hello, home!”

arguments: the char to look for <char> (case sensitive!)

returns: the index (<int>) of the first occurrence of char

indexOf

<String>.indexOf(<char>);

String exampleStr = "Hello, home!";

int index = exampleStr.indexOf('H');
System.out.print(index);

0

memory

index (int)

0

exampleStr (String)

“Hello, home!”

arguments: a specific index in the String <int>

returns: the char at that index

charAt

<String>.charAt(<int>);

String exampleStr = "Hello, home!";

char charPos = exampleStr.charAt(5);
System.out.print(charPos);

memory

charPos (char)

exampleStr (String)

“Hello, home!”>

>

arguments: a specific index in the String <int>

returns: the char at that index

charAt

<String>.charAt(<int>);

String exampleStr = "Hello, home!";

char charPos = exampleStr.charAt(5);
System.out.print(charPos);

,

memory

charPos (char)

‘,’

exampleStr (String)

“Hello, home!”

>
>

arguments: the String to replace is <String1>, the replacement String is <String2>

returns: a String with every occurrence of <String1> replaced by <String2>

replaceAll

<String>.replaceAll(<String1>, <String2>);

String exampleStr = "She sells seashells";

String newStr = exampleStr.replaceAll("ll", "_!!_");
System.out.print(newStr);

She se_!!_s seashe_!!_s

memory

newStr (String)

“She se_!!_s
seashe_!!_s”

exampleStr (String)

“She sells seashells”

>
> "She se_!!_s seashe_!!_s"

>

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first
moves left to right

evaluates inner parentheses before outer parentheses

Order of Evaluation

String exampleStr = "She sells seashells";

System.out.print(exampleStr.replaceAll("ll", “_!!_"));

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first
moves left to right

evaluates inner parentheses before outer parentheses

Order of Evaluation

String exampleStr = "She sells seashells";

System.out.print(exampleStr.replaceAll("ll", “_!!_"));

N.B.: we know print methods
must have some string argument

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first
moves left to right

evaluates inner parentheses before outer parentheses

Order of Evaluation

String exampleStr = "She sells seashells";

System.out.print(exampleStr.replaceAll("ll", “_!!_"));

this statement evaluates to a
string, so we can use it here

"She se_!!_s seashe_!!_s"

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

Order of Evaluation

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

Order of Evaluation

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

Order of Evaluation

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

Order of Evaluation

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;"She se_!!_s seashe_!!_s"

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

Order of Evaluation

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;"She se_!!_s seashe_!!_s"

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

Order of Evaluation

memory exampleStr (String)

"She sells seashells"

exampleStr2 (String)

"and other things"

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;"She se_!!_s seashe_!!_s" "and other things"

Order of Evaluation

memory exampleStr (String)

"She se_!!_s
seashe_!!_sand
other things"

exampleStr2 (String)

"and other things"

In order to set/change the value of a variable, = must be used!

Java will evaluate right of equal sign first

String exampleStr = "She sells seashells";
String exampleStr2 = "and other things";

exampleStr = exampleStr.replaceAll("ll", "_!!_") + exampleStr2;"She se_!!_s seashe_!!_s" "and other things"

Putting It All Together

Multiple ways to read input from a user

In this course, we’ll use the Java-provided Scanner class

our first class data type!

Provides input from the console

The Scanner Class

Using the Scanner Class

import java.util.Scanner;

public class Person {
public static void main(String[] args) {

Scanner scan = new Scanner(System.in);
String firstName;

System.out.print("What is your first name? ");
firstName = scan.nextLine();
System.out.print("Your name is ");
System.out.print(firstName);

}
}

What is your first name?
Your name is

Jim> >

>

>
>
>

>
>

>
>

> >Jim >

firstName (String)

memory

"Jim"

import Statements

import java.util.Scanner;

What is your first name?
Your name is

Jim
Jim

public class
public static void

Scanner
String

System
firstName
System
System

}
}

Enables your program to
leverage additional
functionality

either from within Java, or from
a third-party source

Eclipse will help you find
what imports you need

Definition: Variable Declaration

declare a single variable

<dataType> <identifier>;

declare multiple variables of the same type

<dataType> <identifier>, <identifier>, <identifier>;

Definition: Object Variable Instantiation

instantiate an object variable

<identifier> = new <dataType>(<arguments>);

N.B.: the data type associated
with the identifier must

match this data type

N.B.: arguments provide details
necessary to create/use the

object; will be specific to each
type of object

We initialize primitive
variables

We instantiate object
variables

Same basic idea — setting
the variable up for use

We initialize primitive
variables

We instantiate object
variables

Same basic idea — setting
the variable up for use

Definition: Combining Declaration & Instantiation

declare & instantiate a single object variable

<dataType> <identifier> = new <dataType>(<arguments>);

declare & instantiate multiple object variables of the same type

<dataType> <identifier> = new <dataType>(<arguments>), <identifier>;

Definition: Scanner Creation

declare & instantiate a single object variable

<dataType> <identifier> = new <dataType>(<arguments>);

Scanner scan = new Scanner(System.in);

N.B.: this works because the
data type associated with the

identifier matches this data type

N.B.: for Scanner objects, we need to
define where we are receiving input

from; System.in specifies the console

Definition: Calling an Object’s Methods

calls <methodName>, specifying <arguments> if necessary

<identifier>.<methodName>(<arguments>);

dot notation says “we want to perform the
set of instructions associated with

<methodName>, and that this method is
available for <identifier>’s data type”

we refer to this process as
calling a method

Definition: Scanner Methods

nextLine: reads in a String until a linebreak

scan.nextLine();

nextInt: reads in a single int until whitespace (i.e., one number)

scan.nextInt();

next: reads in a String until whitespace (i.e., one word)

scan.next();

Once a method finishes it’s calculation, it will return the result of the
calculation to your program

the value returned will have a specific data type

not all methods will return a value

Definition: Method Returns

scanner.nextLine(); //returns a String

scanner.nextInt(); //returns an int

scanner.next(); //returns a String

Using the Scanner Class

import java.util.Scanner;

public class Person {
public static void main(String[] args) {

Scanner scan = new Scanner(System.in);
String firstName;

System.out.print("What is your first name? ");
firstName = scan.nextLine();
System.out.print("Your name is ");
System.out.print(firstName);

}
}

What is your first name? Jim>

>

>
>
>
>

> >Jim >

firstName (String)

memory

"Jim"

"Jim"

Your name is

